
Understanding and Evolving
the Rust Programming Language

Dissertation zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

vorgelegt von
Ralf Jung

Saarbrücken, August 2020

Tag des Kolloquiums
2020-08-21

Dekan der Fakultät für Mathematik und Informatik
Prof. Dr. Thomas Schuster

Prüfungsausschuss
Vorsitzender: Prof. Dr. Sebastian Hack
Gutachter: Prof. Dr. Derek Dreyer

Dr. Viktor Vafeiadis
Dr. François Pottier

Akademischer Mitarbeiter: Dr. Rodolphe Lepigre

Abstract
Rust is a young systems programming language that aims to fill the gap between high-level languages—which
provide strong static guarantees like memory and thread safety—and low-level languages—which give the
programmer fine-grained control over data layout and memory management. This dissertation presents two
projects establishing the first formal foundations for Rust, enabling us to better understand and evolve this
important language: RustBelt and Stacked Borrows.

RustBelt is a formal model of Rust’s type system, together with a soundness proof establishing memory and
thread safety. The model is designed to verify the safety of a number of intricate APIs from the Rust standard
library, despite the fact that the implementations of these APIs use unsafe language features.

Stacked Borrows is a proposed extension of the Rust specification, which enables the compiler to use the
strong aliasing information in Rust’s types to better analyze and optimize the code it is compiling. The
adequacy of this specification is evaluated not only formally, but also by running real Rust code in an
instrumented version of Rust’s Miri interpreter that implements the Stacked Borrows semantics.

RustBelt is built on top of Iris, a language-agnostic framework, implemented in the Coq proof assistant, for
building higher-order concurrent separation logics. This dissertation begins by giving an introduction to Iris,
and explaining how Iris enables the derivation of complex high-level reasoning principles from a few simple
ingredients. In RustBelt, this technique is exploited crucially to introduce the lifetime logic, which provides a
novel separation-logic account of borrowing, a key distinguishing feature of the Rust type system.

Zusammenfassung
Rust ist eine junge systemnahe Programmiersprache, die es sich zum Ziel gesetzt hat, die Lücke zu schließen
zwischen Sprachen mit hohem Abstraktionsniveau, die vor Speicher- und Nebenläufigkeitsfehlern schützen,
und Sprachen mit niedrigem Abstraktionsniveau, welche dem Programmierer detaillierte Kontrolle über die
Repräsentation von Daten und die Verwaltung des Speichers ermöglichen. Diese Dissertation stellt zwei
Projekte vor, welche die ersten formalen Grundlagen für Rust zum Zwecke des besseren Verständnisses und
der weiteren Entwicklung dieser wichtigen Sprache legen: RustBelt und Stacked Borrows.

RustBelt ist ein formales Modell des Typsystems von Rust einschließlich eines Korrektheitsbeweises, welcher
die Sicherheit von Speicherzugriffen und Nebenläufigkeit zeigt. Das Modell ist darauf ausgerichtet, einige
komplexe Komponenten der Standardbibliothek von Rust zu verifizieren, obwohl die Implementierung dieser
Komponenten unsichere Sprachkonstrukte verwendet.

Stacked Borrows ist eine Erweiterung der Spezifikation von Rust, die es dem Compiler ermöglicht, den
Quelltext mit Hilfe der im Typsystem kodierten Alias-Informationen besser zu analysieren und zu optimieren.
Die Tauglichkeit dieser Spezifikation wird nicht nur formal belegt, sondern auch an echten Programmen
getestet, und zwar mit Hilfe einer um Stacked Borrows erweiterten Version des Interpreters Miri.

RustBelt basiert auf Iris, welches die Konstruktion von Separationslogiken für beliebige Programmiersprachen
im Beweisassistenten Coq ermöglicht. Diese Dissertation beginnt mit einer Einführung in Iris und erklärt, wie
komplexe Beweismethoden mit Hilfe weniger einfacher Bausteine hergeleitet werden können. In RustBelt wird
diese Technik für die Umsetzung der „Lebenszeitlogik“ verwendet, einer Erweiterung der Separationslogik mit
dem Konzept von „Leihgaben“ (borrows), welche eine wichtige Rolle im Typsystem von Rust spielen.

iii

Acknowledgments

For the past six years, while working towards this dissertation, I had the
time of my life. I was able to follow my curiosity at my heart’s desire, to
travel the world, and—most importantly—to learn from and work with
the most amazing people.

First and foremost, of course, I am indebted beyond words to my advisor,
Prof. Derek Dreyer. In German, we call our PhD advisor “Doktorvater”,
doctoral father, and Derek really is my academic father in the best possible
meaning of the word. He knew exactly how to convince me to work with
him (by providing a never-ending series of interesting problems to solve),
he knew when to throw me in at the deep end (by registering me for
an overseas conference when I had no passport and never navigated an
airport on my own), and above all he always supported me in every way
I could imagine (like when I was in the USA without a credit card, or
when my job plans changed abruptly due to a global pandemic). His eerie
ability to ask exactly the right question after a long and deeply technical
presentation of my latest ideas always baffled me. The German virtue
of punctuality is not his strength, but when it counted, he was always
there and always on time. I could not have done any of this without you,
Derek.

Furthermore I would like to thank Viktor Vafeiadis and François Pottier
for reviewing my dissertation and providing plenty of valuable feedback.
I thank Prof. Gert Smolka and Prof. Sebastian Hack for providing advice
throughout my undergraduate time and beyond. I also thank all the office
and IT staff at MPI-SWS that helped with everything from travel bureau-
cracy to organizing a PhD defense during a pandemic to configuring our
servers to just the right specification. Special thanks to Rose Hoberman
for proof-reading large parts of my dissertation and to Rodolphe Lepigre
for helping to squash plenty of typos.

All of the work described in this dissertation could not be done by one
person alone, so I also thank all my academic collaborators. In particular
I would like to thank Robbert Krebbers, with whom I wrote half of my
papers. Robbert’s dedication to detail and consistency is astonishing, as
is his ability to do solid engineering in a patchwork of languages that
grew organically over decades. Iris would not be what it is without him.
He is the ideal collaborator, both fun to work with and to hang out with
over a Belgian beer. A big thank you also to Jacques-Henri Jourdan,
whose creativity for circumnavigating technical challenges was crucial for
RustBelt.

v

I would like to thank Mozilla for two internships during which I devel-
oped what eventually became Stacked Borrows. In particular thank you
to my internship advisors, Aaron Turon and Niko Matsakis. Aaron in fact
helped initiate each of the three projects described in this dissertation:
his post-doc with Derek briefly overlapped with my PhD, and when he
left I inherited an early version of Iris from him. He left to Mozilla to
work on Rust, which is when the idea for RustBelt started to shape. And
later he invited me to do an internship with Mozilla Research, which
eventually turned into Stacked Borrows. I also shamelessly copied the
typesetting style of his dissertation. Niko gave me the chance to come back
for a second internship, and provided me with the unique opportunity
of influencing how a real language deals with unsafe code and undefined
behavior.

Over the past decade, I had the fortune to become close friends with
a group of nerdy computer scientists, filling my non-research time with
delight as we play board games, hunt werewolves, search geocaches, or
discuss the meaning of life over lunch. I love you all! You are exactly
the people I need to have around me. In particular, I thank Elias, Tim,
Jana, and Andrea for proof-reading part of my dissertation, and Janno
for being my travel companion countless times and sticking with me when
I got stuck on the wrong continent.

And finally, last but certainly not least, I thank my family. My father,
knowingly or not, started this entire journey when he gifted me a book
that teaches programming to children. He also used his editing superpower
on almost my entire dissertation. My mother was always around when I
needed her, but at the same time made sure I would learn to stand on
my own feet. Whenever I started to be too sure of myself, my brother
was ready to show me my limits. And lastly, I would like to mention
Norbert Lukas, my late grandfather, an architect, who would have been
so happy to see his grandson become a doctor of engineering. I dedicate
this dissertation to him.

Saarbrücken, August 2020
Ralf Jung

vi

Contents

1 Introduction 1
1.1 Making systems programming safer with unsafe code? . 2
1.2 Understanding Rust: RustBelt . 5
1.3 Evolving Rust: Stacked Borrows . 7
1.4 Overview and contributions . 10
1.5 Publications . 11
1.6 Collaborations . 12

I Iris 17

2 Why Iris? 19
2.1 Separation logic . 19
2.2 Concurrent separation logic . 20
2.3 Extensions of CSL . 21
2.4 Iris . 23

3 An introduction to Iris 25
3.1 Ghost state in Iris: Resource algebras . 30
3.2 Invariants . 36
3.3 Persistent propositions . 37
3.4 Proof of the example . 38

4 Ghost state constructions 43
4.1 RA constructions . 43
4.2 State-transition systems . 48
4.3 One RA to rule them all . 53
4.4 Authoritative ghost state . 55

5 Invariants and modalities 63
5.1 General invariants and the later modality . 63
5.2 Cancellable invariants . 64
5.3 Mask-changing view shifts . 66
5.4 Weakest preconditions and the persistence modality . 67
5.5 View shifts as a modality . 69
5.6 Accessors . 70
5.7 Summary: Iris proof rules . 74

vii

6 Paradoxes 77
6.1 Naive higher-order ghost state paradox . 77
6.2 Linear impredicative invariants paradox . 80

7 Key differences to prior work 85
7.1 Stability . 85
7.2 Resource algebra axioms . 87
7.3 Substitution-based language . 89

II RustBelt 93

8 Rust 101 95
8.1 Ownership and ownership transfer . 95
8.2 Mutable references . 97
8.3 Shared references . 97
8.4 Interior pointers . 98
8.5 Lifetimes . 99
8.6 Interior mutability . 102

9 The λRust language and type system 105
9.1 Syntax . 106
9.2 Operational semantics . 108
9.3 Type system: Overview . 113
9.4 Type system: Appendix . 123

10 A semantic model of λRust types in Iris 131
10.1 A simplified semantic domain of types . 131
10.2 Program logic . 132
10.3 Interpreting types . 135
10.4 Interpreting shared references . 137

11 Lifetime logic 141
11.1 Full borrows and lifetime tokens . 141
11.2 Lifetime inclusion . 144
11.3 Fractured borrows . 145
11.4 Atomic borrows . 148
11.5 Indexed borrows: Unifying persistent borrowing . 148
11.6 Implementing the lifetime logic (without reborrowing) . 157
11.7 Implementing the full lifetime logic . 172

12 Semantic type system soundness 183
12.1 Semantically modeling λRust lifetime judgments . 184
12.2 Semantically modeling λRust types . 187
12.3 Interlude: Non-atomic invariants and borrowing . 194
12.4 Semantically modeling λRust typing judgments . 195
12.5 The fundamental theorem of λRust . 201

13 Modeling types with interior mutability 205
13.1 Cell . 205
13.2 Mutex . 213

viii

14 Related work 225
14.1 Substructural type systems for state . 225
14.2 Rust verification . 227

III Stacked Borrows 231

15 Uniqueness and immutability 233
15.1 Mutable references in a stack . 234
15.2 An operational model of the borrow checker . 235
15.3 Accounting for raw pointers . 236
15.4 Retagging, and a proof sketch for the optimization on mutable references 238
15.5 Shared references . 241
15.6 An optimization exploiting read-only shared references . 242
15.7 A proof sketch for the optimization on shared references . 244

16 Protectors and interior mutability 245
16.1 Reordering memory accesses down instead of up . 245
16.2 Protectors . 246
16.3 Proof sketches for the optimizations . 248
16.4 Interior mutability . 249

17 Formal operational semantics 255
17.1 High-level structure . 255
17.2 Memory accesses . 257
17.3 Retagging . 259

18 Evaluation 263
18.1 Miri . 263
18.2 Coq formalization . 265

19 Related work 267

20 Conclusion 271
20.1 Future work . 272

ix

Chapter 1

Introduction

Systems programming has, for the longest time, resisted the adoption
of languages that provide any form of safety guarantee. The majority
of low-level software is still written in C or C++, which—while having
undergone serious modernization in recent years—still put most of the
burden of ensuring basic memory safety onto the programmer. Even
the most diligent programmer will make a mistake occasionally, and the
resulting memory safety issues can cause real problems: both Microsoft
and the Chrome team at Google report that around 70% of the security
vulnerabilities in their products are caused by memory safety violations.1

Memory safety has been successfully achieved in many other languages
by giving up some amount of control over how the program interacts with
memory: the typical approach is to use garbage collection, restricting
programmer control over both data layout and deallocation. However, in
systems programming, where minimizing resource consumption (including
CPU time and memory usage) is a primary concern, giving up that control
is often not an option. Thus, a language is needed that can offer the same
amount of control as C and C++ while also providing high-level safety
guarantees.

Rust2 is a young programming language that claims to fill this gap.
Sponsored by Mozilla and developed in the open by a large and diverse
community of contributors, it is already seeing industrial application in
Mozilla’s own Firefox browser, in small start-ups, and in big established
companies.3 Even Microsoft’s Security Response Center Team recently
announced that it is actively exploring the use of Rust to stem the tide of
security vulnerabilities.4

Like C++, Rust gives the programmer control over memory manage-
ment (letting the programmer determine how data is laid out in memory
and when memory gets deallocated), and it puts a heavy emphasis on
zero-cost abstractions:5

What you don’t use, you don’t pay for. And further: What you do use,
you couldn’t hand code any better.

At the same time, and unlike C++, Rust promises to guarantee type
safety and memory safety (no use-after-free, no double-free). More than
that, Rust rules out common mistakes that plague many safe languages,
such as iterator invalidation6 where an iterator gets invalidated because
the data structure it iterates over is mutated during the iteration. Rust
is even able to guarantee that the program is free from data races, which

1 Thomas, “A proactive approach
to more secure code”, 2019 [Tho19];
The Chromium project, “Chromium
security: Memory safety”, 2020
[The20].

2 Rust teams, “Rust Programming
Language”, 2020 [Rus20].

3 See https://www.rust-lang.org/
production for some examples.

4 Levick, “Why Rust for safe sys-
tems programming”, 2019 [Lev19];
Burch, “Using Rust in Windows”,
2019 [Bur19].

5 Stroustrup, “The design and
evolution of C++”, 1994 [Str94];
Stroustrup, “Foundations of C++”,
2012 [Str12].

6 Bierhoff, “Iterator specification
with typestates”, 2006 [Bie06].

1

https://www.rust-lang.org/production
https://www.rust-lang.org/production

Chapter 1: Introduction

means there is no unintended communication between threads through
shared memory. This goes beyond the safety guarantees of mainstream
“safe” languages,7 making Rust both a more powerful and a safer language.

That is the claim, anyway. This dissertation presents the first logical
framework capable of formally proving these claims correct. Before laying
out the structure of that framework, we8 will provide some more back-
ground on Rust and explain what makes verifying Rust’s safety claims
particularly challenging.

1.1 Making systems programming safer with unsafe code?

To demonstrate the kind of memory safety problems that arise commonly
in systems programming languages, let us consider the following C++
code:

1 std::vector<int> v { 10, 11 };
2 int *vptr = &v[1]; // Points *into* ‘v‘.
3 v.push_back(12);
4 std::cout << *vptr; // Bug (use-after-free)

In the first line, this program creates a std::vector (a growable array)
of integers. The initial contents of v, the two elements 10 and 11, are
stored in a buffer in memory. In the second line, we create a pointer
vptr that points into this buffer; specifically it points to the place where
the second element (with current value 11) is stored. Now both v and
vptr point to (overlapping parts of) the same buffer; we say that the two
pointers are aliasing.

In line 3, we push a new element to the end of v. The element 12 is
added after 11 in the buffer backing v. If there is no more space for an
additional element, a new buffer is allocated and all the existing elements
are moved over. Let us assume this is what happens here. Why is this
case interesting? Because vptr still points to the old buffer! In other
words, adding a new element to v has turned vptr into a dangling pointer.
This is possible because both pointers were aliasing: an action through
a pointer (v) will in general also affect all its aliases (vptr). We can
visualize the situation after line 3 as follows:

v

10
11

(old buffer)

10
11
12

(new buffer)

vptr

Figure 1.1: The shape of
memory in the C++ pointer
invalidation program after
line 3.

The fact that vptr is now a dangling pointer becomes a problem in
the last line. Here we load from vptr, and since it is a dangling pointer,
this is a use-after-free bug.

In fact, the problem is common enough that one instance of it has its
own name: iterator invalidation,9 which we already mentioned earlier, ba-
sically reduces to the same pattern (where the pointer vptr is maintained
internally by the iterator). It most commonly arises when one iterates over

7 In contrast, Java gives very weakly
defined semantics to data races. In
Go and Swift, data races can even
violate memory safety.

8 Following common scientific
practice, we use the first person
plural to refer to work done by the
author, whether or not it was done
in collaboration with others. For
further details, see §1.6.

9 Gregor and Schupp, “Making the
usage of STL safe”, 2002 [GS02].

2

Chapter 1: Introduction

some container data structure in a loop, and indirectly, but accidentally,
calls an operation that mutates the data structure. Notice that in practice
the call to the operation that mutates the data structure (push_back in
line 3 of our example) might be deeply nested behind several layers of
abstraction. In particular when code gets refactored or new features get
added, it is often near impossible to determine if pushing to a certain
vector will invalidate pointers elsewhere in the program that are going to
be used again later.

In Rust, issues like iterator invalidation and null pointer misuse are
detected statically, by the compiler—they lead to a compile-time error
instead of a run-time exception or a security vulnerability. Consider the
following Rust translation of our C++ example:

1 let mut v = vec![10, 11];
2 let vptr = &mut v[1]; // Points *into* ‘v‘.
3 v.push(12); // May reallocate the backing store of v.
4 println!("{}", *vptr); // Compiler error

Like in the C++ version, there is a buffer in memory, and vptr points
into the middle of that buffer (causing aliasing); push might reallocate
the buffer, which leads to vptr becoming a dangling pointer, and that
leads to a use-after-free in line 4.

But none of this happens; instead the compiler shows an error: “cannot
borrow v as mutable more than once at a time”. In §8, we will explain
in detail how the Rust typechecker is able to detect this problem. For
now, it suffices to say that Rust’s type system is more complex than the
“average”, incorporating ideas such as ownership (a form of linear types)
and a flow-sensitive analysis for tracking how pointers are borrowed for
certain lifetimes (inspired by prior work on regions).10

However, there is a catch: the inner workings of Vec make significant
use of direct pointer manipulation to achieve, e.g., amortized constant-
time pushing of elements to the vector (very much like std::vector in
C++). One of the key choices the Rust designers made is not to build
a type system that can verify safety of these kinds of low-level patterns
that systems programmers regularly employ to make their code more
efficient. Instead, Rust introduces the unsafe keyword to clearly mark
syntactic scopes in which such potentially dangerous operations can be
performed. This avoids accidentally leaving the realm of safe Rust by
using such features.

At this point one might wonder, how does unsafe code not entirely
subvert the safety guarantees Rust claims to provide? The answer lies in
the power of safe abstractions. Rather than having an extremely complex
type system that can verify the safety of a data structure that manually
deals with uninitialized memory, concurrency or any other subtle aspect of
low-level programming, Rust focuses on being able to help all the clients
of such a data structure by making sure that they follow the contract that
was intended by the implementer.

For example, std::vector in C++ comes with a lot of good doc-
umentation that explains how to properly use this type, pointing out
issues such as the one in our example above. However, these are all just

10 See §14 for citations and related
work.

3

Chapter 1: Introduction

comments written for humans—there is no way for the typechecker to
help the programmer follow those rules. In contrast, Rust’s Vec comes
with sufficiently detailed types so that the typechecker can check if Vec is
used correctly. The authors of Vec claim that the unsafe operations they
used have been properly “encapsulated” behind these types. This means
that programmers who rely just on the public API and do not use unsafe
themselves are shielded from any unsafe behaviors. The Rust type system
is not strong enough to ensure correct encapsulation (it cannot prove this
code to be safe), but it is strong enough to ensure that the public API of
Vec is used correctly.

Shielding the users of Vec from unsafety relies on both ownership and
pointer lifetimes being enforced by the typechecker. One can view the
Rust type system as some kind of “language” suited to express the allowed
interactions at an API surface. While this language does have some
non-trivial vocabulary, it is arguably simpler than the type systems of
prior work such as Cyclone11 or Mezzo12—Rust’s type system only has to
be sufficient to express the surface of types like Vec; thanks to its reliance
on unsafe code, it does not have to be able to express what is going on
in their implementation.

Still, there could be a mismatch between what the author of Vec expects
the type system to enforce, and what the type system really does. That
risk is rather low for Vec as it only makes rather conventional use of the
type system, but other standard library types like Mutex use the type
system in more interesting ways. Mutex is a primitive for mutable state
shared between concurrent threads, with run-time enforcement of mutual
exclusion ensuring safety—in other words, it is a standard lock. The
Rust type system is generally built around the idea that shared state
is read-only, but types like Mutex use a clever combination of run-time
and type-system enforcement to circumvent this restriction, enabling safe
code to work with shared mutable state. This pattern is called interior
mutability. To ensure that Rust’s promise of safe systems programming
holds true, it is important to be able to verify that abstractions such as
Vec or Mutex safely encapsulate their unsafe implementation details.

And indeed, several bugs have been found in the Rust standard library
where the public API of a type was insufficiently constrained to guarantee
that it could not be used incorrectly by safe code.13 Of these, “Leakpoca-
lypse”14 is particularly noteworthy because it only arises as a combination
of multiple libraries, each of which is (believed to be) sound in isolation.
A few years later, a similar case was found15 where some standard library
types as well as a new language feature turned out to be incompatible
with a user-defined unsafely implemented library. This shows a clear need
for some formal way of establishing not just safety of a single library, but
also safe composition of a collection of libraries.

Unfortunately, the typical syntactic approach to verification of type
soundness—due originally to Wright and Felleisen16 and later refined and
popularized as “progress and preservation”17—is unsuited for verifying
Rust’s “extensible” notion of safety. Progress and preservation is a closed-
world method, i.e., it assumes a fixed set of safe language primitives with
their typing rules. The resulting theorem in Rust would only apply to

11 Swamy et al., “Safe manual
memory management in Cyclone”,
2006 [Swa+06].

12 Balabonski, Pottier, and
Protzenko, “The design and for-
malization of Mezzo, a permission-
based programming language”, 2016
[BPP16].

13 Ben-Yehuda,
“std::thread::JoinGuard (and
scoped) are unsound because of ref-
erence cycles”, 2015 [Ben15]; Biocca,
“std::vec::IntoIter::as_mut_slice
borrows &self, returns &mut of
contents”, 2017 [Bio17]; Jung, “Mu-
texGuard<Cell<i32>> must not
be Sync”, 2017 [Jun17]; Jourdan,
“Insufficient synchronization in
Arc::get_mut”, 2018 [Jou18].

14 Ben-Yehuda,
“std::thread::JoinGuard (and
scoped) are unsound because of
reference cycles”, 2015 [Ben15].

15 Jeffrey, “Rust 1.20 caused pinning
to become incorrect”, 2018 [Jef18].

16 Wright and Felleisen, “A syntactic
approach to type soundness”, 1994
[WF94].

17 Harper, “Practical foundations
for programming languages (second
edition)”, 2016 [Har16].

4

Chapter 1: Introduction

programs that are not using any unsafely implemented library. Of course,
the same is true for other languages with unsafe “escape hatches”, such as
Obj.magic in OCaml, unsafePerformIO in Haskell, or foreign-function
calls to C code in pretty much any language. However, those escape
hatches are typically considered niche features and thus declared out of
scope of formalization efforts. This is not an option in Rust: unsafe code
is used pervasively at the foundation of the Rust ecosystem, and hence
must be taken into account by a realistic formalization of the language.

1.2 Understanding Rust: RustBelt

For this dissertation, we have developed RustBelt,18 the first formal (and
machine-checked) model of Rust which can account for Rust’s extensible
approach to safe systems programming and verify its soundness. Our
soundness proof is extensible in the sense that, given a new unsafely
implemented library and its type, RustBelt defines a proof obligation
that is sufficient to show that any safe Rust program using this library is
memory safe and thread safe. It is also modular in the sense that libraries
can be verified independently and composed arbitrarily.

At the center of RustBelt is λRust, a Rust core language, with its type
system. For reasons of scale, λRust is not a full model of Rust, for which
no formal description exists anyway. But crucially, λRust incorporates
the core features that make up Rust’s ownership discipline: borrowing,
lifetimes, and lifetime inclusion. λRust is loosely inspired by MIR, the Mid-
level Intermediate Representation in the Rust compiler on which correct
usage of borrows is checked. For simplicity, we omit some orthogonal
features of Rust such as traits (an adaptation of Haskell type classes),
we avoid the subtleties of integer-pointer casts19 by not supporting such
an operation, and we circumvent the complications associated with weak
memory20 by adopting a simplified memory model supporting only non-
atomic and sequentially-consistent atomic operations.21 Nevertheless,
λRust is a realistic enough model that we were able to uncover a previously
unknown soundness bug in the Rust standard library.22

The key idea that makes the extensible soundness proof of RustBelt
work is to define a semantic model of λRust’s type system. This is hardly
a new idea; in fact Milner’s original type soundness proof for an ML-style
polymorphic λ-calculus23 followed the semantic approach, based on the
idea of a logical relation.24 A logical relation defines what a type “means”—
what terms it is inhabited by—through the observable behavior of a term
rather than “what the syntactic typing rules allow”. In particular, for a
function to be well-typed, only its input-output behavior is relevant; the
body of the function can use unsafe features as long as it does not violate
the type system guarantees.

Scaling that approach up to more powerful languages involving higher-
order state turned out to be quite challenging, so the simpler—but less
powerful—syntactic approach of progress and preservation mostly took
over. Over the last two decades, however, work on logical relations has
made a lot of progress,25 and at this point there are established techniques
for building “step-indexed” logical relations that can handle all type

18 RustBelt is also the name of the
larger research project of which
this work is the cornerstone; for
further information, see https:
//plv.mpi-sws.org/rustbelt/.

19 Lee et al., “Reconciling high-level
optimizations and low-level code in
LLVM”, 2018 [Lee+18].

20 Batty, “The C11 and C++11
concurrency model”, 2015 [Bat15].

21 Marrying λRust with a relaxed
memory model is the topic of some
exciting follow-on work (Dang et al.,
“RustBelt meets relaxed memory”,
2020 [Dan+20]).

22 Jung, “MutexGuard<Cell<i32>>
must not be Sync”, 2017 [Jun17].

23 Milner, “A theory of type poly-
morphism in programming”, 1978
[Mil78].

24 Tait, “Intensional interpretations
of functionals of finite type I”,
1967 [Tai67]; Plotkin, “Lambda-
definability and logical relations”,
1973 [Plo73].

25 Appel, “Foundational proof-
carrying code”, 2001 [App01];
Ahmed et al., “Semantic foun-
dations for typed assembly lan-
guages”, 2010 [Ahm+10]; Appel
and McAllester, “An indexed model
of recursive types for foundational
proof-carrying code”, 2001 [AM01];
Ahmed, “Semantics of types for
mutable state”, 2004 [Ahm04].

5

https://plv.mpi-sws.org/rustbelt/
https://plv.mpi-sws.org/rustbelt/

Chapter 1: Introduction

system features of a modern language like Rust, including recursive types
and higher-order state.

In RustBelt, we follow the style of “logical” accounts of step-indexed
logical relations.26 This means we interpret the types of λRust as predicates
on values expressed in a suitably powerful logic, and we interpret the
typing judgments of λRust as logical entailments between these predicates.

With our semantic model in hand, the safety proof of λRust divides into
three parts:

1. Verify that the typing rules of λRust are sound when interpreted seman-
tically. For each typing rule we show a lemma establishing that the
semantic interpretations of the premises imply the semantic interpreta-
tion of the conclusion. This is called the fundamental theorem of logical
relations.

2. Verify that, if a closed program is semantically well-typed according
to the model, it is safe to execute—there will be no safety violations.
This is called adequacy.

3. For any library that employs unsafe code internally, verify that its
implementation satisfies the “safety contract” of its public interface.
This safety contract is determined by the semantic interpretations of
the types of the library’s public API. It establishes that all unsafe
code has been properly “encapsulated” behind that API. In essence,
the semantic interpretation of the interface yields a library-specific
verification condition.

Together, these proofs establish that, as long as the only unsafe code
in a well-typed λRust program is confined to libraries that satisfy their
verification conditions, the program is safe to execute.

Using the Coq proof assistant,27 we have formally proven the funda-
mental theorem and adequacy (Theorem 4 and Theorem 5 in §12), and we
have also proven the verification conditions for (λRust models of) several
standard Rust libraries that use unsafe code, including Arc, Rc, Cell
(§13.1), RefCell, Mutex (§13.2), RwLock, mem::swap, thread::spawn,
rayon::join, and take_mut.

While the high-level structure of our soundness proof is standard,28
developing such a proof for a language as subtle and sophisticated as Rust
has required us to tackle a variety of technical challenges. The two key
challenges we would like to highlight here are the choice of the right logic
and finding an appropriate model of lifetimes and borrowing.

Choosing the right logic for modeling Rust. “Which logic are you using”
might sound like an odd question to ask, but for our semantic model of
λRust this was the most fundamental design choice. In Rust, many types
encode not just information about a value, but ownership of some form,
like exclusive ownership of a region of memory. While ownership can be
encoded explicitly as part of building the semantic model (e.g., by working
with predicates over some suitable form of “resources”), doing so is tedious
and error-prone, akin to writing a computer program in assembly language.
Thus we choose to work at a higher level of abstraction by adopting a
separation logic29 as the framework in which we construct our semantic

26 Dreyer, Ahmed, and Birkedal,
“Logical step-indexed logical re-
lations”, 2011 [DAB11]; Dreyer
et al., “A relational modal logic
for higher-order stateful ADTs”,
2010 [Dre+10]; Turon, Dreyer, and
Birkedal, “Unifying refinement and
Hoare-style reasoning in a logic for
higher-order concurrency”, 2013
[TDB13]; Krogh-Jespersen, Svend-
sen, and Birkedal, “A relational
model of types-and-effects in higher-
order concurrent separation logic”,
2017 [KSB17].

27 Coq Team, “The Coq proof
assistant”, 2020 [Coq20].

28 Milner, “A theory of type poly-
morphism in programming”, 1978
[Mil78]; Ahmed, “Semantics of types
for mutable state”, 2004 [Ahm04].

29 Reynolds, “Separation logic:
A logic for shared mutable data
structures”, 2002 [Rey02]; O’Hearn,
“Resources, concurrency, and local
reasoning”, 2007 [OHe07].

6

Chapter 1: Introduction

model. Using a separation logic means we can use its connectives such as
points-to (7→) and the separating conjunction (∗), which lend themselves
very naturally to encode the basic ownership involved in types like Vec.

However, basic separation logic is not sufficient: it is very limited in
the kinds of ownership it can express. To achieve maximal expressiveness
when defining the semantic interpretation of Rust’s types, we need a more
flexible logic. This is where Iris30 enters the picture. Iris is a language-
agnostic framework for building higher-order concurrent separation logics.
On top of that, Iris comes with built-in support for step-indexing, avoiding
the tedious manual bookkeeping that usually comes with step-indexed
logical relations. Moreover, Iris lets the user introduce their own notion
of “ownership”, based on the idea of fictional separation,31 where a single
piece of shared state can be logically divided between multiple threads.
And finally, Iris comes with excellent support for interactive machine-
checked proofs in Coq.32 Iris is the first major project described in this
dissertation, and forms the foundation for the later chapters on RustBelt.

Modeling lifetimes and borrowing. Iris provides built-in support for rea-
soning about many forms of ownership. But for a complete model of
λRust types, we also need to express logically what it means to borrow
something for a certain lifetime.33 This is where we exploit that Iris was
designed from the start to derive new reasoning principles inside the logic.

Using all key features of Iris, including impredicative invariants34 and
higher-order ghost state,35 we construct the novel lifetime logic and verify
its correctness in Iris. The primary feature of the lifetime logic is a logical
proposition which mirrors the “borrowing” mechanism of the Rust type
system. This lifetime logic makes it possible for us to give fairly direct
interpretations of a number of Rust’s most semantically complex types,
and to verify their soundness at a high level of abstraction. A detailed
description of the lifetime logic (§11) sits at the heart of the second main
project in this dissertation, RustBelt.

1.3 Evolving Rust: Stacked Borrows

Type systems like that of Rust are useful not only for making programs
more secure and reliable, but also for helping compilers generate more
efficient code. For example, a language with a strong type system does
not have to waste time and space maintaining dynamic type information
on all run-time data. In Rust, the type system imposes a strict discipline
on pointer aliasing. It is thus a natural question to ask whether that
static discipline can be exploited by the compiler.

In particular, mutable references &mut T in Rust are unique pointers
that cannot alias with anything else in scope. This knowledge should
enable us to optimize the following function:

1 fn example1(x: &mut i32, y: &mut i32) -> i32 {
2 *x = 42;
3 *y = 13;
4 return *x; // Has to read 42, because x and y cannot alias!
5 }

30 Jung et al., “Iris: Monoids and
invariants as an orthogonal basis
for concurrent reasoning”, 2015
[Jun+15]; Jung et al., “Higher-
order ghost state”, 2016 [Jun+16];
Krebbers et al., “The essence of
higher-order concurrent separation
logic”, 2017 [Kre+17]; Jung et al.,
“Iris from the ground up: A mod-
ular foundation for higher-order
concurrent separation logic”, 2018
[Jun+18b].

31 Dinsdale-Young, Gardner, and
Wheelhouse, “Abstraction and
refinement for local reasoning”, 2010
[DGW10]; Dinsdale-Young et al.,
“Concurrent abstract predicates”,
2010 [Din+10].

32 Krebbers, Timany, and Birkedal,
“Interactive proofs in higher-order
concurrent separation logic”, 2017
[KTB17]; Krebbers et al., “MoSeL:
A general, extensible modal frame-
work for interactive proofs in
separation logic”, 2018 [Kre+18].

33 The Rust concepts of borrowing
and lifetimes will be explained
in §8.

34 Svendsen and Birkedal, “Im-
predicative concurrent abstract
predicates”, 2014 [SB14].

35 Jung et al., “Higher-order ghost
state”, 2016 [Jun+16].

7

Chapter 1: Introduction

Since mutable references are unique, x and y cannot alias. As a conse-
quence, the compiler should be allowed to assume that the read in line 4
will yield 42, so it can remove the memory access and replace it by a
constant. Typically, the way such an optimization would be justified is
through reordering of instructions. If we know x and y do not alias, then
we can reorder lines 2 and 3, and it becomes clear that the value read
from x in line 4 must be the value just written to it, namely 42.36

Having access to this kind of alias information is a compiler writer’s
dream, in part because it is essential in justifying reorderings and other
program transformations which are key to improving code generation,37
and in part because such alias information is typically hard to come by.38
In particular, the alias analysis that is possible in most programming
languages is fundamentally limited by the weakness of conventional type
systems. For example, in cases like the one above, where x and y are passed
to a function from its environment, a C/C++ compiler cannot make any
local assumption about whether these pointers alias with each other or
with any other pointer the program might be using—it would need to
perform a more global, interprocedural analysis, which is often prohibitively
expensive (or impossible if the whole program is not available). In contrast,
because it enforces a strict discipline of pointer usage, the Rust type system
provides a rich source of alias information that can be used to justify
transformations like the one above intraprocedurally.

Unfortunately, things are not quite so easy: as mentioned above, Rust
supports direct pointer manipulation using “raw pointers” in unsafe code.
It is easy to write unsafe code that, when compiled with the current
compiler,39 makes the above function return 13:

1 fn main() {
2 let mut local = 5;
3 let raw_pointer = &mut local as *mut i32;
4 let result = unsafe {
5 example1(&mut *raw_pointer, &mut *raw_pointer)
6 };
7 println!("{}", result); // Prints "13".
8 }

In line 3, this code uses the as operator to cast a reference to local (that
would have type &mut i32) into a raw pointer with type *mut i32. Raw
pointers are not tracked by the type system: similar to pointers in C,
they can be freely interconverted with integers in safe code, and arbitrary
aliasing and address arithmetic are possible. To maintain soundness of the
type system, dereferencing a raw pointer is only permitted inside unsafe
blocks, ensuring that the programmer explicitly opted-in to potentially
unsafe behavior. Raw pointers exist to allow implementing low-level
pointer-heavy data structures in Rust that internally do not follow Rust’s
aliasing discipline, and they are also often necessary when interfacing with
C code through a foreign-function interface (FFI).

In the example above, however, we are using raw pointers for a more
sinister purpose. In line 5, we convert the raw pointer back to a reference.
&mut *raw_pointer dereferences the raw pointer and immediately takes
the address again, so this is effectively a cast from *mut i32 back to

36 Concurrent mutation is ruled out
because that would introduce a data
race, which is considered undefined
behavior.

37 Ghiya, Lavery, and Sehr, “On
the importance of points-to analysis
and other memory disambiguation
methods for C programs”, 2001
[GLS01]; Wilson and Lam, “Efficient
context-sensitive pointer analysis for
C programs”, 1995 [WL95].

38 Horwitz, “Precise flow-insensitive
may-alias analysis is NP-hard”, 1997
[Hor97].

39 All tests were done with the Rust
stable release 1.35.0 in release mode.

8

Chapter 1: Introduction

&mut i32. The sinister part about this cast is that we do it twice! The
type system does not stop us, as it does not even attempt to track what
happens with raw pointers. As a result of all of this, we call example1
with two aliasing references that both point to local, and the function
returns 13. This means our desired optimization of always returning 42
observably changes program behavior.

It is tempting to ignore this problem because it “just” concerns unsafe
code. However, that would be neglecting the important role unsafe code
plays in the Rust ecosystem. Not all Rust code is safe—in fact pretty
much all programs depend on some unsafe code—but that does not
mean that Rust’s safety guarantees are useless. As we have discussed,
the important part is that unsafe code is encapsulated within a safe
abstraction. This approach lets Rust programmers use data structures
such as Vec without worrying about memory safety issues, while at
the same time not compromising efficiency when compared with unsafe
languages such as C or C++. The Rust ecosystem rests on the interplay
of safe code where possible and unsafe code where needed, and hence any
realistic consideration of compilation for Rust programs requires proper
treatment of unsafe code.

So, let us look at our example program again.40 We want to argue
that it is correct to compile this program such that it prints 42, but the
only way we can make such an argument is by tweaking the operational
semantics! The fact that the program “circumvents” the type system is
irrelevant, because the type system is not involved in the definition of
what it means for a Rust compiler to be correct. A compiler correctness
statement that only applies to well-typed programs (in the safe fragment
of Rust) would be useless for all practical purposes, because—as argued
above—most programs being compiled contain unsafe code. So, with the
type system being ruled out, the only knob we have left is the dynamic
semantics of the source language: we have to define the behavior of our
source program in a way that, actually, it is allowed for the program to
output 42.

In the third main part of this dissertation, we describe Stacked Borrows,
an operational semantics for pointer aliasing in Rust. Stacked Borrows
says that our example program has undefined behavior,41 which means
the compiler is allowed to compile it in any way it chooses.

Defining a semantics with that property is not a simple task. A naive
semantics, such as the one used in λRust, will give the example program
a defined meaning and thus force the compiler to print 13. Compared
to such a naive semantics, we have to “add” some undefined behavior to
obtain the desired optimizations. But of course we should not add “too
much” undefined behavior! We have to be careful that “desired” programs
are still well-defined. This includes all safe programs, but should also
include enough unsafe programs to still make unsafe Rust a useful
language for implementing data structures such as Vec, and to minimize
the chances of programmers accidentally running into undefined behavior.

Stacked Borrows enforces Rust’s aliasing discipline by introducing
clearly defined conditions under which a Rust program exhibits undefined

40 Together, main and example1
form a closed program.

41 Wang et al., “Undefined behavior:
What happened to my code?”, 2012
[Wan+12].

9

Chapter 1: Introduction

behavior due to an aliasing violation. The key idea is to define a dynamic
version of the static analysis—called the borrow checker—which Rust
already uses to check that references are accessed in accordance with
its aliasing discipline. The borrow checker enforces in particular that
references that might be aliasing are used in a “well-nested” manner, in a
sense that we will define in §15. We model this discipline in our dynamic
analysis with the use of a per-location stack:42 our dynamic analysis
detects when references get used in a non-stack-like way, and flags such
programs as having undefined behavior. Based on that core structure,
we then extend Stacked Borrows with rules for raw pointers (which the
static borrow checker ignores) with the goal of being maximally liberal
while not interfering with the key properties of the “safe fragment” of our
dynamic analysis.

We have validated Stacked Borrows in two ways:

• To ensure that Stacked Borrows does not introduce “too much” un-
defined behavior, we have equipped Miri,43 an existing interpreter for
Rust programs, with an implementation of Stacked Borrows. We have
run the OS-independent part of the Rust standard library test suite44 in
this interpreter. The majority of tests passed without any adjustments.
We also uncovered a few violations of the model, almost all of which
have been accepted by the Rust maintainers as bugs and have since
been fixed in the standard library. For further discussion, see §18.

• To ensure that Stacked Borrows has “enough” undefined behavior, we
give proof sketches demonstrating that a few representative compiler
transformations, such as the one in example1, are legal under this
semantics. These proof sketches are all backed by fully mechanized
proofs in Coq,45 based on a formalization of Stacked Borrows and a
framework for open simulations.46

1.4 Overview and contributions

The remainder of this dissertation is structured into the three main parts
described above: Iris, RustBelt, and Stacked Borrows. Each part begins
with a brief overview outlining the material covered by its individual
chapters. The conclusion in §20 summarizes this dissertation’s work and
the impact it has had so far, and suggests some avenues for future research.

Contributions. Part I is about Iris. Iris is a multi-institution collaborative
project,47 and there are many things to say about its high-level design, its
soundness proof, and its implementation in Coq. To focus the presentation,
this part of the thesis explains the motivation behind the design of Iris and
introduces the pieces of the logic that are required to understand RustBelt.
For more details on the lower-level aspects of how Iris is implemented, we
refer the reader to “Iris from the ground up”.48

In Part II, we describe RustBelt. The contribution here is a formal
model of core Rust (focusing on ownership, borrowing, and lifetimes)
together with a syntactic type system, and a semantic model of said type
system. This semantic model is based on the novel lifetime logic, which

42 A “stack of borrows”, so to say.

43 Miri is available at https://
github.com/rust-lang/miri/.

44 Concretely, the tests for libcore,
liballoc, and HashMap.

45 Coq Team, “The Coq proof
assistant”, 2020 [Coq20].

46 Hur et al., “The marriage of
bisimulations and Kripke logical
relations”, 2012 [Hur+12].

47 https://iris-project.org/

48 Jung et al., “Iris from the ground
up: A modular foundation for
higher-order concurrent separation
logic”, 2018 [Jun+18b].

10

https://github.com/rust-lang/miri/
https://github.com/rust-lang/miri/
https://iris-project.org/

Chapter 1: Introduction

equips separation logic with a notion of borrowing. On top of all that, we
show how to formally verify semantic safety of some tricky Rust libraries
that use unsafe code.

The final Part III is about Stacked Borrows. We propose a set of precise
rules controlling when aliasing is allowed in Rust and when it is not. We
give sketches of proofs (which have been formalized in Coq) demonstrating
that these rules indeed are sufficient to ensure correctness of some simple
but powerful optimizations. We also evaluate an implementation of these
rules in Miri, a Rust interpreter, to validate that real unsafe code complies
with the rules of the model.

1.5 Publications

This dissertation contains text and material from several publications:

• “Iris: Monoids and invariants as an orthogonal basis for concurrent
reasoning” [Jun+15], which appeared in POPL 2015, is the first paper
on Iris, later called “Iris 1.0”.

• “Iris from the ground up: A modular foundation for higher-order con-
current separation logic” [Jun+18b], which appeared in the Journal
of Functional Programming in 2018, is a significantly revised and ex-
panded synthesis of the “Iris 2.0”49 and “Iris 3.0”50 papers, which
appeared in ICFP 2016 and ESOP 2017, respectively. The Iris intro-
duction (§3) is an expanded version of the one given in this paper, as
is the discussion of the Iris ghost state combinators (§4.1), the global
ghost state (§4.3), and the higher-order ghost state paradox (§6.1).

• “RustBelt: Securing the foundations of the Rust programming language”
[Jun+18a], which appeared in POPL 2018, is the basis of Part II about
RustBelt. However, Part II far exceeds the conference paper in depth
and breadth of the presented material.

• “Safe systems programming in Rust: The promise and the challenge”
[Jun+20b], a general-audience article which has been accepted to
CACM, is the source of the initial motivating example for Rust in §1.1.

• “Stacked Borrows: An aliasing model for Rust” [Jun+20a], which
appeared in POPL 2020, has been adapted into Part III (as well as
parts of the introduction and the Rust tutorial in §8) with only a few
adjustments.

The following list details the origin of the text of the individual chapters:
• §1 (Introduction) takes some material from the RustBelt and Stacked

Borrows papers and the CACM article, combined with a lot of new
text.

• §2 (Why Iris?) is mostly new text, combined with material from the
Iris journal paper (“Iris from the ground up”).

• §3 (An introduction to Iris) is based on the Iris journal paper, but the
example and explanation are expanded to showcase more features of
Iris.

49 Jung et al., “Higher-order ghost
state”, 2016 [Jun+16]. Note that
this paper is the author’s master’s
thesis and its contributions are
thus not contributions of this
dissertation. See §1.6 for more
details.

50 Krebbers et al., “The essence of
higher-order concurrent separation
logic”, 2017 [Kre+17].

11

Chapter 1: Introduction

• §4 (Ghost state constructions) takes some of the description of general
resource algebra (RA) combinators (§4.1) and the global RA construc-
tion (§4.3) from the Iris journal paper. The description of how to
encode a heap using the Iris RA combinators as well as §4.2 and §4.4
are new text.

• §5 (Invariants and modalities) is new text.
• §6 (Paradoxes) contains a description of the higher-order ghost state

paradox from the Iris journal paper (§6.1). §6.2 is new.
• §7 (Key differences to prior work) is mostly new, but parts of §7.2 are

taken from the Iris journal paper.
• §8 (Rust 101) is a combination of the Rust tutorials of the RustBelt

and Stacked Borrows papers.
• §9 (The λRust language and type system) is based on the RustBelt

paper, but I expanded the discussion of the operational semantics and
added another example for typechecking a piece of λRust code. The
text in the “appendix” in §9.4 is new.

• §10 (A semantic model of λRust types in Iris) is taken from the RustBelt
paper, but §10.2 and the “case of the missing .” are new.

• §11 (Lifetime logic) is a significantly expanded version of the corre-
sponding section of the RustBelt paper. §11.4–§11.7 are entirely new.

• §12 (Semantic type system soundness) is almost entirely new, with
just the initial exposition of the theorems being based on the RustBelt
paper.

• §13 (Modeling types with interior mutability) is almost entirely new;
the RustBelt paper contains just a brief description of the semantic
interpretations of Cell and Mutex.

• §14 (Related work) is an expanded version of the related work section
of the RustBelt paper.

• §15–§19 (Stacked Borrows) are taken from the Stacked Borrows paper
with only minor adjustments.

• §20 (Conclusion) is mostly new; some of the description of future work
is based on the Iris journal paper, the RustBelt paper, and the Stacked
Borrows paper.

1.6 Collaborations

All of the work presented in this dissertation is the result of collaborative
projects which I spearheaded.51 Here, I explain the nature and extent of
my specific contributions to each part.

As mentioned above, Iris (Part I) is a major project with involvement
from multiple research institutions. The design and implementation of
the logic have enjoyed many iterative refinements and improvements
to the system from a variety of contributors over time. As such, it is
difficult to tease apart precisely who is responsible for what. Rather
than attempting to carve out a story about Iris that emphasizes my own
individual contributions, I have instead aimed to construct a narrative
that best prepares the reader to understand RustBelt, since the latter is
the heart of this dissertation.

51 In just this section, I will use
the first person singular to refer
specifically to my own contribu-
tions in contrast to those of my
collaborators.

12

Chapter 1: Introduction

That said, I have certainly played a leading role in Iris’s development
from the very beginning of the project. I was first author of the original
“Iris 1.0” paper,52 and in addition to leading the writing of the paper, I was
the one primarily responsible for a number of its main technical innovations,
including: the encoding of general state-transition systems with tokens
(in the spirit of Turon et al.53) in terms of a partial commutative monoid
(§4.2), the pattern of authoritative resources guarded by an invariant (§4.4,
inspired by Krishnaswami et al.54), the factoring of the typical partial
commutative monoid for heaps into a combination of several independent
constructions (§4.1), and the formalization of logically atomic triples (not
covered in this dissertation but central to the story of the original Iris
paper and developed further in recent follow-on work55). I also turned
the view shift binary connective into a modality56 (§5.5), and generalized
that modality to carry two masks, thereby introducing the idea of mask-
changing view shifts (§5.3).

In the subsequent papers on the evolving design of Iris,57 I continued
to play a leading role in the writing and overall development, as well as
to be personally responsible for a number of key technical contributions.
In particular, I worked out the accessor specification pattern based on
mask-changing view shifts (§5.6), a pattern which is not actually described
in any of the Iris publications so far but has been used in the “Iris 3.0”
paper, in the lifetime logic, and in simplifying the encoding of logically
atomic triples.58 I also showed that we can encode cancellable invariants
using the persistent invariants of Iris and some extra ghost state (§5.2).
Finally, I uncovered some boundaries in the design space of higher-order
separation logics by proving two paradoxes (§6): naive higher-order ghost
state is unsound, and impredicative invariants can be used to violate
linearity.

Note that the “Iris 2.0” paper is my master’s thesis. Its contributions—
in particular, the foundations of higher-order ghost state and the introduc-
tion of a “core” to Iris resource algebras—are thus not to be considered
contributions of this dissertation. However, some of this material is
essential to how Iris works, and is thus reviewed in the Iris tutorial (§3).

One key reason for the success of Iris has been its effective imple-
mentation in Coq, in particular the Iris Proof Mode59 and its successor,
MoSeL.60 These contributions are due primarily to Robbert Krebbers,
not me. However, the Coq implementation of Iris is under constant devel-
opment by a growing team of contributors,61 and I serve as one of its three
core maintainers (together with Robbert Krebbers and Jacques-Henri
Jourdan). Moreover, my collaborators insist that I mention that the Iris
project would not have “taken off” to the extent that it did, were it not
for my efforts to set up and maintain the infrastructure for an open-source
project, including public version control, bug tracking, code review, and
continuous integration.

Regarding RustBelt (Part II), I developed the initial version of the
type system (§9), its semantic model (§10, §12), and the lifetime logic
rules (§11) myself. Jacques-Henri Jourdan had the key idea of introducing
lifetime intersection into the lifetime logic. I fully developed the model
of the lifetime logic in Iris on paper, except for some details of the final

52 Jung et al., “Iris: Monoids and
invariants as an orthogonal basis
for concurrent reasoning”, 2015
[Jun+15].

53 Turon et al., “Logical relations
for fine-grained concurrency”, 2013
[Tur+13].

54 Krishnaswami et al., “Superfi-
cially substructural types”, 2012
[Kri+12].

55 Jung et al., “The future is ours:
Prophecy variables in separation
logic”, 2020 [Jun+20c]; Jung,
“Logical atomicity in Iris: The
good, the bad, and the ugly”, 2019
[Jun19d].

56 This “primitive view shift” modal-
ity was not mentioned in the Iris
publications, but appeared as vs in
the technical appendix of the first
Iris paper [Jun+15]. In follow-on
work by Robbert Krebbers, Aleš
Bizjak, and me [Kre+17], we man-
aged to define that modality in
terms of lower-level logical primi-
tives, at which point we renamed it
to fancy update modality.

57 Jung et al., “Higher-order ghost
state”, 2016 [Jun+16]; Krebbers
et al., “The essence of higher-order
concurrent separation logic”, 2017
[Kre+17]; Jung et al., “Iris from
the ground up: A modular foun-
dation for higher-order concurrent
separation logic”, 2018 [Jun+18b].

58 Jung, “Logical atomicity in Iris:
The good, the bad, and the ugly”,
2019 [Jun19d].

59 Krebbers, Timany, and Birkedal,
“Interactive proofs in higher-order
concurrent separation logic”, 2017
[KTB17].

60 Krebbers et al., “MoSeL: A
general, extensible modal framework
for interactive proofs in separation
logic”, 2018 [Kre+18].

61 https://gitlab.mpi-sws.org/iris
/iris/-/blob/master/CHANGELOG.md
provides a full list of who
contributed to which Iris release.

13

https://gitlab.mpi-sws.org/iris/iris/-/blob/master/CHANGELOG.md
https://gitlab.mpi-sws.org/iris/iris/-/blob/master/CHANGELOG.md

Chapter 1: Introduction

induction in §11.7 which Jacques-Henri Jourdan, Robbert Krebbers, and
I worked out together while formalizing my arguments in Coq. Jacques-
Henri Jourdan and I worked together on verifying the various unsafe
libraries. The Coq formalization was led by Jacques-Henri Jourdan,
but also received major contributions from Robbert Krebbers and me.
Finally, I led the writing of the RustBelt paper,62 although it also received
significant contributions from all co-authors.

For Stacked Borrows (Part III), I developed the rules and implemen-
tation of Stacked Borrows in Miri as part of an internship with Mozilla.
The later formal definition (§17) and correctness proof in Coq were led
by Hoang-Hai Dang, with some assistance from Jeehoon Kang, but I
helped to determine the key invariant of the proof and to complete its
mechanization in Coq. I wrote the text of the Stacked Borrows paper63
almost entirely myself, with just minor input from my coauthors.

All results presented in this dissertation have been formally verified in
Coq. As declared above, I did not lead these proof mechanization efforts,
but I did contribute significantly to them. The respective Coq sources
are available under the following URLs:
• Part I, Iris:

https://gitlab.mpi-sws.org/iris/iris
• Part II, RustBelt:

https://gitlab.mpi-sws.org/iris/lambda-rust
• Part III, Stacked Borrows:

https://gitlab.mpi-sws.org/FP/stacked-borrows

This research was supported in part by a European Research Council
(ERC) Consolidator Grant for the project “RustBelt”, funded under the
European Union’s Horizon 2020 Framework Programme (grant agreement
no. 683289).

62 Jung et al., “RustBelt: Secur-
ing the foundations of the Rust
programming language”, 2018
[Jun+18a].

63 Jung et al., “Stacked Borrows:
An aliasing model for Rust”, 2020
[Jun+20a].

14

https://gitlab.mpi-sws.org/iris/iris
https://gitlab.mpi-sws.org/iris/lambda-rust
https://gitlab.mpi-sws.org/FP/stacked-borrows

Part I

Iris

Part I: Iris

Iris is a separation logic framework for building program logics and
logical relations. Within just a few years, it has already been adopted
by several research groups: more than twenty publications1 and four
dissertations2 have made use of Iris. In particular, the second part of
this dissertation—RustBelt—builds on top of Iris. The purpose of this
first part is two-fold: to explain the motivation and key ideas of Iris and
compare it to related work, and furthermore to lay the foundations that
will be needed to understand the technical aspects of the second part.

This part begins by explaining how Iris fits into the general line of
research on separation logics (§2). We proceed with a tour demonstrating
the key features of Iris with a simplified example (§3). Having laid the
foundations, we then go into more detail about ghost state (§4) and
invariants (§5) in Iris, with a focus on how to define complex abstractions
from simpler foundations. We close with a discussion of two paradoxes
that establish clear limitations in the design of Iris (§6) and a discussion
of the key design decisions that distinguish Iris from its predecessors (§7).

Krogh-Jespersen, Svendsen, and Birkedal, “A relational model of types-and-effects in higher-order concurrent separation logic”,
2017 [KSB17]; Tassarotti, Jung, and Harper, “A higher-order logic for concurrent termination-preserving refinement”, 2017
[TJH17]; Kaiser et al., “Strong logic for weak memory: Reasoning about release-acquire consistency in Iris”, 2017 [Kai+17];
Swasey, Garg, and Dreyer, “Robust and compositional verification of object capability patterns”, 2017 [SGD17]; Timany et al.,
“A logical relation for monadic encapsulation of state: Proving contextual equivalences in the presence of runST”, 2018 [Tim+18];
Jung et al., “RustBelt: Securing the foundations of the Rust programming language”, 2018 [Jun+18a]; Frumin, Krebbers, and
Birkedal, “ReLoC: A mechanised relational logic for fine-grained concurrency”, 2018 [FKB18]; Tassarotti and Harper, “A separation
logic for concurrent randomized programs”, 2019 [TH19]; Bizjak et al., “Iron: Managing obligations in higher-order concurrent
separation logic”, 2019 [Biz+19]; Mével, Jourdan, and Pottier, “Time credits and time receipts in Iris”, 2019 [MJP19]; Frumin,
Gondelman, and Krebbers, “Semi-automated reasoning about non-determinism in C expressions”, 2019 [FGK19]; Timany and
Birkedal, “Mechanized relational verification of concurrent programs with continuations”, 2019 [TB19]; Chajed et al., “Verifying
concurrent, crash-safe systems with Perennial”, 2019 [Cha+19]; Sammler et al., “The high-level benefits of low-level sandboxing”,
2020 [Sam+20]; Jung et al., “The future is ours: Prophecy variables in separation logic”, 2020 [Jun+20c]; Hinrichsen, Bengtson,
and Krebbers, “Actris: Session-type based reasoning in separation logic”, 2020 [HBK20]; de Vilhena, Pottier, and Jourdan, “Spy
game: Verifying a local generic solver in Iris”, 2020 [dPJ20]; Dang et al., “RustBelt meets relaxed memory”, 2020 [Dan+20];
Krogh-Jespersen et al., “Aneris: A mechanised logic for modular reasoning about distributed systems”, 2020 [Kro+20]; Krishna,
Patel, and Shasha, “Verifying concurrent search structure templates”, 2020 [KPS20]; Giarrusso et al., “Scala step-by-step:
Soundness for dot with step-indexed logical relations in Iris”, 2020 [Gia+20]; Frumin, Krebbers, and Birkedal, “Compositional
non-interference for fine-grained concurrent programs”, 2021 [FKB21].

1 That many citations do not fit in
the margin, so we list them at the
bottom of this page instead.

2 Timany, “Contributions in pro-
gramming languages theory: Logical
relations and type theory”, 2018
[Tim18]; Krogh-Jespersen, “Towards
modular reasoning for stateful and
concurrent programs”, 2018 [Kro18];
Tassarotti, “Verifying concurrent
randomized algorithms”, 2019
[Tas19]; Krishna, “Compositional
abstractions for verifying concurrent
data structures”, 2019 [Kri19].

18

Chapter 2

Why Iris?

Iris grew out of a long line of work on separation logic, starting with
the seminal work of O’Hearn, Reynolds, and Yang1 and continuing with
concurrent separation logic2 and plenty of follow-on work.3 To explain
the motivation behind Iris, we begin with a brief review of this history.

2.1 Separation logic

Separation logic was introduced 20 years ago4 as a derivative of Hoare
logic geared towards reasoning more modularly and scalably about pointer-
manipulating programs.

The poster child of separation logic is the points-to assertion: ` 7→ v

is a logical statement expressing knowledge that the current value stored
at location ` is v, and also expressing ownership of said location by the
current code. Ownership implies that there cannot be another part of
the program that can “interfere” by updating `; in fact, the rest of the
program cannot even read ` or make any kind of statement about this
allocation. The right to mutate or even deallocate ` is only granted to
code that holds ownership.

This is in contrast to most non-separation logics where statements like
“` points to v” (suitably formalized) are inherently unstable: because there
is no notion of “rights” or “ownership”, any other code (be it another
thread, or a callback we are calling in higher-order code) could write to `
any time, which would make “` points to v” no longer true. Separation
logic provides a way to make stable statements in an unstable world:
` 7→ v is stable under interference from the rest of the program even
though it is a statement about mutable state in an imperative language.5

Besides the points-to assertion, separation logic also introduced (in-
spired by earlier work on “bunched implications”6) a new way of composing
assertions: the separating conjunction P ∗ Q asserts that not only do
P and Q both hold, they actually hold for disjoint parts of the heap.
The usefulness of the separating conjunction is best demonstrated by
considering the frame rule of separation logic:

frame
{P} e {Q}

{P ∗R} e {Q ∗R}

This rule says that if we have a proof of some specification for e with pre-
condition P and postcondition Q (say, some specification that was verified

1 O’Hearn, Reynolds, and Yang,
“Local reasoning about programs
that alter data structures”, 2001
[ORY01].

2 O’Hearn, “Resources, concurrency,
and local reasoning”, 2007 [OHe07].

3 Vafeiadis and Parkinson, “A
marriage of rely/guarantee and
separation logic”, 2007 [VP07];
Feng, Ferreira, and Shao, “On the
relationship between concurrent sep-
aration logic and assume-guarantee
reasoning”, 2007 [FFS07]; Feng,
“Local rely-guarantee reason-
ing”, 2009 [Fen09]; Dodds et al.,
“Deny-guarantee reasoning”, 2009
[Dod+09]; Dinsdale-Young et al.,
“Concurrent abstract predicates”,
2010 [Din+10]; Fu et al., “Reason-
ing about optimistic concurrency
using a program logic for history”,
2010 [Fu+10]; Turon, Dreyer, and
Birkedal, “Unifying refinement and
Hoare-style reasoning in a logic for
higher-order concurrency”, 2013
[TDB13]; Svendsen and Birkedal,
“Impredicative concurrent abstract
predicates”, 2014 [SB14]; Nanevski
et al., “Communicating state tran-
sition systems for fine-grained con-
current resources”, 2014 [Nan+14];
da Rocha Pinto, Dinsdale-Young,
and Gardner, “TaDA: A logic for
time and data abstraction”, 2014
[dDG14].

4 O’Hearn, Reynolds, and Yang,
“Local reasoning about programs
that alter data structures”, 2001
[ORY01]; Reynolds, “Separation
logic: A logic for shared mutable
data structures”, 2002 [Rey02].

5 Some descendants of CSL combine
“unstable” assertions with separa-
tion logic. We will come back to
this point in §7.1.

6 O’Hearn and Pym, “The logic of
bunched implications”, 1999 [OP99];
Ishtiaq and O’Hearn, “BI as an
assertion language for mutable data
structures”, 2001 [IO01].

19

Part I: Iris Chapter 2: Why Iris?

for a function), and if before executing e we have some extra ownership R
on top of the precondition P , then we can frame R around e and conclude
that we still own R after e returns, on top of the postcondition Q.7

frame is an extremely powerful principle. The separating conjunction
is key to even being able to express this rule. Imagine for a second that
we would replace the separating conjunction by a plain conjunction (∧).
Then clearly, there is no way this frame rule could hold, as we could derive
the following nonsense rule (by picking R := P):

{P} e {Q}
{P} e {Q ∧ P}

Basically, anything that was true before e would still be true afterwards.
In an imperative language where pre- and postconditions can refer to
mutable state, this cannot be true—statements such as P are in general
not stable.

The reason the frame rule works is that it uses separating conjunction
to make sure that the ownership R that is “framed around” e is disjoint
from the precondition P . The frame rule says that any state not explicitly
described in the precondition is unaffected by e.

To summarize, separation logic enables local reasoning about mutable
state by (a) giving proofs a local way to talk about mutable state while
excluding interference from other code, through ownership expressed
by the points-to assertion; and (b) letting proofs preserve ownership of
unrelated parts of the heap when applying specifications, through framing.

2.2 Concurrent separation logic

With the introduction of concurrent separation logic (CSL), O’Hearn and
Brookes demonstrated that separation logic is a great fit for verification
of concurrent programs.8

Parallel composition. The key proof rule of CSL is the following rule for
parallel composition:9

par
{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 || e2 {Q1 ∗Q2}

This rule says that to verify a parallel composition e1 || e2 executing
two threads concurrently, we can verify both threads individually as long
as we separately own their preconditions. We then separately own their
postconditions when both threads are done.

This rule is beautiful! It has to be seen in contrast to the kind of
global conditions that are common in the line of work descending from
Owicki-Gries’s seminal first program logic for concurrent programs, where
every statement made anywhere in the proof (including all intermediate
pre- and postconditions) must be checked for interference with other
threads. In CSL, because assertions are stable under interference, this all
gets replaced by a single separating conjunction. In some sense, we can
even see this rule as a generalization of the frame rule: if e2 is a thread

7 The original frame rule had some
extra side-conditions concerning free
variables. We will come back to this
in §7.3 when explaining why they
are not needed in Iris.

8 O’Hearn, “Resources, concur-
rency, and local reasoning”, 2007
[OHe07]; Brookes, “A semantics for
concurrent separation logic”, 2007
[Bro07].

9 Again, we are omitting side-
conditions concerning free variables.

20

Part I: Iris Chapter 2: Why Iris?

that does nothing (represented below by the unit value, ()), its pre- and
postcondition become the same, so let us call it R. We can specialize par
as follows:

{P1} e1 {Q1} {R} () {R}
{P1 ∗R} e1 || () {Q1 ∗R}

As we can see, framing is basically parallel composition with a thread
that does nothing.

Resource invariants. The rule for parallel composition is sufficient to
verify programs where concurrent threads only act on disjoint state.
However, most concurrent programs at some point have to communicate,
which requires sharing some state (be it via a mutable heap or message-
passing channels). This entails some form of interference between the
communicating threads. To reason about interference in a local way,
CSL introduced a simple form of resource invariants tied to “conditional
critical regions”.10 Each region is associated with a resource invariant
(expressed as a separation logic formula), indicating what it is that this
critical region “guards” or “protects”. The proof rule for critical region r
grants the program access to that resource invariant Ir for the duration
of the critical region:11

critical-region
{P ∗ Ir} e {Q ∗ Ir}

{P} with r do e endwith {Q}

This rule says that Ir is added to the resources available to this thread for
the duration of the critical region r (compare the two preconditions), but
when the critical region ends, the process must again return ownership of
Ir and said ownership is taken away (compare the two postconditions).
This very elegantly expresses the idea that the thread temporarily has
exclusive access to the resources guarded by the critical region.

Resource invariants are a very simple form of protocol describing how
multiple threads interact on a piece of shared state. The ingenuity of the
approach lies in the fact that once the resource invariant is determined,
each thread has to only consider said invariant and its own actions; the
actions of the other threads are abstracted away by the invariant. This
means that verification can proceed in a modular fashion.

2.3 Extensions of CSL

O’Hearn showed that, using only the standard rules of separation logic
plus par and critical-region, one could elegantly verify some rather
“daring” synchronization patterns in which ownership of shared resources
is transferred subtly between threads in a way that is not syntactically
evident from the program text.

It is thus unsurprising that the vast majority of the prior work cited
above descends more or less directly from CSL. The way in which that
work innovates is mostly along two axes: generalizing the heap to other
kinds of “resources” that can be owned, and generalizing invariants to
other kinds of “protocols” that are expressible in the logic.

10 Resource here is a generalization
of “heap”, referring to whatever
it is that can be owned by some
code and split disjointly by the
separating conjuction.

11 This rule is simplified to only
apply to non-conditional critical
regions, and again side-conditions
regarding free variables are omitted.

21

Part I: Iris Chapter 2: Why Iris?

More resources. The next key step in separation logic was the introduc-
tion of “fictional separation”:12 even though two threads may be operating
on the same piece of the physical state, we can conceptually view them
as operating on disjoint logical parts of that state.

The simplest example of fictional separation are “fractional permis-
sions”:13 the points-to assertion becomes ` q7−→ v, which expresses ownership
of the fraction q of location `. Separating conjunction splits the fraction
into pieces:

`
q1+q27−−−−→ v ⇐⇒ `

q17−→ v ∗ ` q27−→ v

Full ownership (q = 1) is required to write to `, but reading can be done by
any thread owning some fraction of the location. This permits verification
of code that performs read-only sharing of some part of the memory: as
long as no thread writes to the shared location, no synchronization14 is
necessary. At the same time, keeping track of the exact fraction even for
partial ownership allows re-combining the permissions later so that the
full permission can be recovered when all threads are done.

The culmination of this development are “user-defined resources”, where
the user of a logic gets to pick an arbitrary instance of some algebra which
they can then use as their notion of “resource” for their proofs. Particularly
noteworthy for the development of Iris is the Views Framework:15 a general
recipe for how to define a separation logic given some “separation algebra”
as a notion of resources, and given some relation between these resources
and the physical state of the program. Through this relation, resources
are viewed as “views” onto the physical state. The key innovation of the
Views Framework is its action judgment that defines when a view may be
“updated” from one resource to another. This idea of “updating” resources
makes them behave a lot like a piece of state that can be manipulated
in the logic but does not have to exist in the real program. And indeed
these user-defined resources can take the role of auxiliary variables16 in
Hoare logic, also sometimes called “ghost state”.

The Views Framework requires fixing the notion of resources before
defining the logic. Fictional Separation Logic17 demonstrates an approach
for “dynamically” adding resources during the proof.18

More protocols. However, adding more and more flexibility to resources
(extending what can be owned in a separation logic) was not sufficient.
Plain resource invariants were unable to describe the intricate interac-
tions arising in complex concurrent data structures, so new logics also
introduced more powerful “protocol” mechanisms to describe those in-
teractions. Usually, this involved some form of “states” and “transitions”
with “guards” on the transitions to encode asymmetry (where a transition
can be taken by some but not all threads).19 Initially, states were just
invariants and transitions could move from one invariant to another;20
later work introduced a notion of an “abstract state” that a protocol can
be in,21 a state-transition system on those abstract states, and a state
interpretation defining the invariant that has to hold in each state.22

Unlike for the case of resources, no consolidation of these protocol
mechanisms was in sight. As a reaction to this situation, Matthew
Parkinson wrote in his position paper The Next 700 Separation Logics:23

12 Dinsdale-Young, Gardner, and
Wheelhouse, “Abstraction and
refinement for local reasoning”, 2010
[DGW10]; Dinsdale-Young et al.,
“Concurrent abstract predicates”,
2010 [Din+10].

13 Boyland, “Checking interference
with fractional permissions”, 2003
[Boy03]; Bornat et al., “Permission
accounting in separation logic”,
2005 [Bor+05].

14 e.g., through a critical region

15 Dinsdale-Young et al., “Views:
Compositional reasoning for concur-
rent programs”, 2013 [Din+13].

16 Jones, “The role of auxiliary
variables in the formal development
of concurrent programs”, 2010
[Jon10]; Kleymann, “Hoare logic
and auxiliary variables”, 1999
[Kle99].

17 Jensen and Birkedal, “Fictional
separation logic”, 2012 [JB12].

18 We will see in §4.3 how we
modularly handle defining the
notion of resources in Iris.

19 These guards form another kind
of resource, but are intrinsically
linked to the protocol mechanism.

20 Dinsdale-Young et al., “Con-
current abstract predicates”, 2010
[Din+10].

21 Turon et al., “Logical relations
for fine-grained concurrency”, 2013
[Tur+13]; Turon, Dreyer, and
Birkedal, “Unifying refinement and
Hoare-style reasoning in a logic for
higher-order concurrency”, 2013
[TDB13].

22 The difference between the newer
“abstract state” approach and the
prior one can be compared to the
difference between a tagged and
an untagged union: the current
abstract state is maintained as an
explicit piece of information, instead
of permitting any transition that
happens to match the resources
currently justifying the invariant.

23 Parkinson, “The next 700 separa-
tion logics - (Invited paper)”, 2010
[Par10].

22

Part I: Iris Chapter 2: Why Iris?

In recent years, separation logic has brought great advances in the world
of verification. However, there is a disturbing trend for each new library
or concurrency primitive to require a new separation logic.

Parkinson argued that what is needed is a general logic for concurrent
reasoning, into which a variety of useful specifications can be encoded via
the abstraction facilities of the logic. “By finding the right core logic,” he
wrote, “we can concentrate on the difficult problems.” We are proposing
Iris as that core logic.

2.4 Iris

The new key idea that Iris brings to the story of concurrent separation
logics is that sufficiently flexible ownership can encode protocols. Instead
of coming up with yet another novel protocol mechanism that somehow
encompasses all of the previous ones, Iris rests on the realization that
arbitrary user-defined resources combined with simple resource invariants
in the style of original CSL are powerful enough already. Since resources
are little more than arbitrary partial commutative monoids, the slogan
for the initial version of Iris24 (later dubbed “Iris 1.0”) was: Monoids and
invariants are all you need.

However, during further development, it turned out that this slogan
was inadequate in two ways:

• Plain monoids are not enough. There are some useful kinds of ghost
state, such as “saved propositions” (see §6), for which the structure of
the ghost state and the propositions of the separation logic must be
defined in a mutually recursive way. We refer to this as higher-order
ghost state, and for encoding higher-order ghost state, it seems we need
something more sophisticated than monoids.

• Iris is not just monoids & invariants. Although monoids and invariants
did indeed constitute the two main conceptual elements of Iris 1.0—and
they are arguably “canonical” in their simplicity and universality—some
of the mechanisms that embed these concepts into the logic were more
ad-hoc. For example, Iris 1.0 had built-in support for creating many
instances of the same kind of ghost state, and invariants required
a notion of “namespaces” to ensure soundness. Iris 1.0 also came
with primitives such as mask-changing view shifts (for performing
logical updates to resources that may involve “opening” or “closing”
invariants) and weakest preconditions (for encoding Hoare triples).
Moreover, the proof rules for these mechanisms were non-standard, and
their semantic model quite involved, making the justification of the
primitive rules—not to mention the very meaning of Iris’s Hoare-style
program specifications—very difficult to understand or explain. Indeed,
the Iris 1.0 paper avoided presenting the formal model of program
specifications.

In subsequent work on “Iris 2.0”25 and “Iris 3.0”26 we have addressed
these two points:

24 Jung et al., “Iris: Monoids and
invariants as an orthogonal basis
for concurrent reasoning”, 2015
[Jun+15].

25 Jung et al., “Higher-order ghost
state”, 2016 [Jun+16].

26 Krebbers et al., “The essence of
higher-order concurrent separation
logic”, 2017 [Kre+17].

23

Part I: Iris Chapter 2: Why Iris?

• In Iris 2.0, to support higher-order ghost state, we proposed a gen-
eralization of partial commutative monoids (PCMs) to what we call
cameras.27 Roughly speaking, a camera is a kind of “step-indexed
PCM”, i.e., a PCM equipped with a step-indexed notion of equality28

such that the composition operator of the PCM is sufficiently “com-
patible” with the step-indexed equality. Step-indexing has always been
essential to how Iris models the propositions of higher-order separation
logic, and by incorporating step-indexed equality into PCMs, cameras
enable us to model ghost state that can embed propositions.

• In Iris 3.0, we simplified the remaining sources of complexity in Iris by
taking the Iris story to its “logical” conclusion: applying the reductionist
Iris methodology to Iris itself! Specifically, at the core of Iris 3.0 is a
small, resourceful base logic which distills the essence of Iris to a bare
minimum: a higher-order logic extended with the basic connectives of
bunched implications29 (separating conjunction and magic wand), a
predicate for resource ownership, and a handful of simple modalities.
We do not bake in any propositions about programs or invariants.
It is only this base logic whose soundness must be proven directly
against an underlying semantic model (employing the aforementioned
cameras). Moreover, using the mechanisms provided by the base logic,
Iris 1.0’s fancier mechanisms of mask-changing view shifts and weakest
preconditions, and even invariants themselves—together with their
associated proof rules—can all be derived within the logic.

In other words, the key to unifying all protocol mechanisms in Iris
turned out to be the complete removal of dedicated protocol mechanisms
from the logic, relying entirely on ownership of resources. It turns out
that fancy monoids are all you need.

However, for the purpose of this dissertation, it is not helpful to go all
the way down to the Iris base logic. We refer the interested reader to “Iris
from the ground up”,30 which explains in great detail how to construct a
program logic with support for invariants using the base logic, and how
to justify the soundness of the Iris base logic in the first place. In the
following, we will instead stay on the level of said program logic, and
focus more on constructing higher-level reasoning principles from monoids
and invariants.

27 Cameras were originally called
CMRAs (but already pronounced
“cameras”), for “Complete Metric
space Resource Algebras”. That
name stopped working when we real-
ized we could drop the completeness
requirement.

28 Appel and McAllester, “An
indexed model of recursive types for
foundational proof-carrying code”,
2001 [AM01]; Birkedal et al., “First
steps in synthetic guarded domain
theory: Step-indexing in the topos
of trees”, 2011 [Bir+11].

29 O’Hearn and Pym, “The logic of
bunched implications”, 1999 [OP99];
Ishtiaq and O’Hearn, “BI as an
assertion language for mutable data
structures”, 2001 [IO01].

30 Jung et al., “Iris from the ground
up: A modular foundation for
higher-order concurrent separation
logic”, 2018 [Jun+18b].

24

Chapter 3

An introduction to Iris

In this chapter, we introduce Iris by verifying a small example program,
motivating and demonstrating the use of its most important features.

Iris is a generic higher-order concurrent separation logic.1 “Generic”
refers to the fact that the logic is parameterized by the language of
program expressions that one wishes to reason about, so the same logic
can be used for a wide variety of languages. Before we start with the
example, we briefly introduce our idealized language and the grammar of
the logic.

Language. For the purpose of this dissertation we instantiate Iris with
HL (HeapLang): an ML-like language with higher-order store, fork, and
compare-exchange (CmpX), as given below:

v, w ∈Val ::= () | z | true | false | ` | λx.e | (`, z ∈ Z)
(v, w) | inl(v) | inr(v)

e ∈ Expr ::= v | x | e1(e2) | fork {e} | assert(e) |
ref(e) | ! e | e1 ← e2 | CmpX(e, e1, e2) | . . .

K ∈ Ctx ::= • | K(e) | v(K) | assert(K) |
ref(K) | !K | K ← e | v ← K |
CmpX(K, e1, e2) | CmpX(v,K, e2) | CmpX(v, v1,K) | . . .

We omit the usual projections on pairs and pattern matching on sums as
well as primitive operations on values (comparison, addition, . . .).

The operational semantics are defined in Figure 3.1. The state of
a program execution is given by a heap σ mapping locations ` to val-
ues v, and a thread pool storing the expression each thread is executing.
Thread-pool reduction (T1, σ1) −→tp (T2, σ2) just picks some thread non-
deterministically2 and takes a step in that thread. Thread reduction uses
evaluation contexts K to find a reducible head expression3 and reduces it.
Head reduction (e1, σ1) −→h (e2, σ2, ~ef) says that head expression e1 with
current heap σ1 can step to e2, change the heap to σ2 and spawn new
threads ~ef (this is a list of expressions) in the process. We use “stuckness”
(irreducible expressions) to model bogus executions, like a program that
tries to use a Boolean (or an integer) to access memory, or a program
that runs into assert(false).

The steps our programs can take are mostly standard, except for
CmpX(`, w1, w2): this compare-exchange instruction atomically compares

1 “Separation logic” here implies
that it also is a program logic—
though Iris is used not just for
program verification, e.g., in §10
we will see how to define a logical
relation with Iris.

2 This is demonic non-determinism,
so we abstract over all possible
schedulers.

3 There can be several head expres-
sions, but in our language only one
of them is reducible. In other words,
evaluation order is deterministic.

25

Part I: Iris Chapter 3: An introduction to Iris

Head reduction.

((λx.e)(v), σ) −→h (e[v/x], σ, ε)
(fork {e} , σ) −→h ((), σ, e)

(assert(true), σ) −→h ((), σ, ε)
(ref(v), σ) −→h (`, σ[`← v] , ε) if σ(`) = ⊥

(! `, σ[`← v]) −→h (v, σ[`← v] , ε)
(`← w, σ[`← v]) −→h ((), σ[`←w] , ε)

(CmpX(`, w1, w2), σ[`← v]) −→h ((v, true), σ[`←w2] , ε) if v ∼= w1

(CmpX(`, w1, w2), σ[`← v]) −→h ((v, false), σ[`← v] , ε) if v � w1

Thread-local and threadpool reduction.

(e, σ) −→h (e′, σ′, ~ef)
(K[e], σ) −→t (K[e′], σ′, ~ef)

(e, σ) −→t (e′, σ′, ~ef)
(T1; e;T2, σ) −→tp (T1; e′;T2;~ef , σ′)

Figure 3.1: Operational seman-
tics.

the value stored in location ` with w1, and if the two are equal, stores
w2 in `; if they are unequal, the value stored in ` remains unchanged.
It returns a pair of the old value stored in ` and a Boolean indicating
whether the comparison was successful.4

Our comparison operator ∼= is non-standard in that it is partial: not
all values can be compared. For example, we do not allow comparing
closures with each other, and we do not allow comparing compound types
such as pairs, because both of these operations cannot be implemented
on real hardware (either atomically, or at all). In general, comparison is
only permitted if at least one operand is “unboxed”, which means it is a
literal ((), z, `, true, or false) or inl/inr of a literal.5 We use v ∼= wq

to say that the two values can be compared and are equal, and v � w1 to
say that they can be compared and are unequal. If v and w1 cannot be
compared, CmpX is stuck. (The same comparison judgments are also used
for the binary = operator.)

Logic. The logic of Iris includes the usual connectives and rules of higher-
order separation logic, some of which are shown in the grammar below.6

P,Q,R ::= True | False | P ∧Q | P ∨Q | P ⇒ Q | ∀x. P | ∃x. P |
P ∗Q | P −∗ Q | ` 7→ v | t = u |

�P | P N | a γ | V(a) | {P} e {v. Q}E | P VE Q | . . .

We will talk in more detail about the non-standard connectives as they
come up.

We show some of the proof rules for Hoare triples in Figure 3.2. Since
HL is an expression-based language (as opposed to a statement-based
language), Hoare triples need to be able to talk about the return value of
the expression. This is made possible in Iris by making the postcondition

4 This matches exactly the
AtomicCmpXchgInst in LLVM. Not
that HL is modeled after LLVM,
but we wanted to make sure the
semantics are implementable and
useful.

5 We call these values “unboxed”
because in a hypothetical imple-
mentation of HeapLang, we could
represent them all in a machine
word and represent all larger com-
pound values as pointers to a
“boxed” representation on the heap.

6 Actually, many of the connectives
given in this grammar are not
primitive to Iris. They are defined
as derived forms, and this flexibility
is an important aspect of the
logic. We will see a glimpse of that
in §4 and §5; for further details,
see “Iris from the ground up: A
modular foundation for higher-
order concurrent separation logic”
[Jun+18b].

26

Part I: Iris Chapter 3: An introduction to Iris

hoare-frame
{P} e {w. Q}E

{P ∗R} e {w. Q ∗R}E

hoare-value
{True} v {w. w = v}E

hoare-bind
{P} e {v. Q}E ∀v. {Q}K[v] {w. R}E

{P}K[e] {w. R}E

hoare-λ
{P} e[v/x] {w. Q}E
{P} (λx.e)(v) {w. Q}E

hoare-fork
{P} e {True}

{P} fork {e} {True}E

hoare-assert
{True} assert(true) {True}E

hoare-alloc
{True} ref(v) {`. ` 7→ v}E

hoare-load
{` 7→ v} ! ` {w. w = v ∗ ` 7→ v}E

hoare-store
{` 7→ v} `← w {` 7→ w}E

hoare-cmpx-suc
v ∼= w1

{` 7→ v} CmpX(`, w1, w2) {v′. v′ = (v, true) ∗ ` 7→ w2}E

hoare-cmpx-fail
v � w1

{` 7→ v} CmpX(`, w1, w2) {v′. v′ = (v, false) ∗ ` 7→ v}E

heap-exclusive
` 7→ v ∗ ` 7→ w ` False

Figure 3.2: Basic Iris rules for
Hoare triples.a predicate on the return value of the expression e, with an explicit binder

(usually v).7 We sometimes (ab)use that binder as a (refutable) pattern,
implying that the return value must match the pattern (e.g., in hoare-
alloc, where the return value must be a location). When we omit it, it
means the return value is unconstrained (like in hoare-fork).

Another consequence of the expression-based nature of HL is that the
usual sequence rule to chain statements is generalized to the bind rule
(hoare-bind): when some expression e is plugged into an evaluation
context K (i.e., it is in evaluation position), we can first verify e and
then use its result v to verify the evaluation of the context with that
result (K[v]).

We also have the usual frame rule that was mentioned in the previous
chapter (hoare-frame)—without any side-conditions (see §7.3). hoare-
λ reflects that function application is subject to β-reduction. We have
similar rules for each head reduction step that does not interact with the
heap. The rules for heap accesses are standard for separation logics, except
hoare-cmpx-suc and hoare-cmpx-fail, which reflect the operational
semantics of CmpX.

The reader might wonder what happened to the rule for parallel com-
position, or indeed what happened to the parallel composition operator
itself? Instead of parallel composition, which executes two expressions in
parallel and waits until both are done, HL has fork, which spawns of a
new thread that just keeps running asynchronously in the background.
fork provides unstructured parallelism which is strictly more powerful
than the structured parallelism afforded by parallel composition.8 This
corresponds to the usual concurrency primitive of languages like Java,
C++ or Rust, which also offer unstructured parallelism. The proof rule

7 The more common approach to
talk about the return value in a
postcondition is to use a magic
identifier like ret for this purpose.
We use a binder to be more true
to the mechanization in Coq, and
because it avoids shadowing in case
of nested Hoare triples.

8 Another term sometimes used
in this context is “fork-join paral-
lelism”. Confusingly, this typically
(but not always) refers to structured
parallelism with parallel compo-
sition, which can be viewed as a
single fork-join operation. With
unstructured parallelism, fork and
join are two independently usable
operations. In HL, join can be
implemented inside the language,
so we did not make it a primitive
operation.

27

Part I: Iris Chapter 3: An introduction to Iris

for fork (hoare-fork) says that any resources P owned by the current
thread may be used to verify the forked-off thread. If that seems confusing,
consider this rule composed with framing:

{P} e {True}
{P ∗Q} fork {e} {Q}E

This already looks much more like par from the introduction: the resources
of the current thread can be split into P (handed off to the forked-off
thread) and Q (kept by the current thread). Unlike parallel composition,
there is no built-in mechanism to get resources back from the new thread,
which corresponds to there not being a built-in way to wait for the other
thread to finish (to “join” the other thread). Such a mechanism can be
implemented inside HL and verified in Iris, so it is not provided as a
primitive.9

What makes Iris a higher-order separation logic is that universal and
existential quantifiers can range over any type, including that of proposi-
tions themselves and even (higher-order) predicates. Furthermore, notice
that Hoare triples {P} e {v. Q}E are part of the proposition logic (also
often called “assertion logic”) instead of being a separate entity (the
“program logic” is entirely separated in CSL and many of its descendants).
As a consequence, triples can be used in the same way as any logical
proposition, and in particular, they can be nested to give specifications of
higher-order functions. Hoare triples {P} e {v. Q}E are moreover anno-
tated with a mask E to keep track of which invariants are currently in
force. We will come back to invariants and masks in §3.2, but for the
time being we omit them.

A motivating example. We will demonstrate the higher-order aspects of
Iris, and some other of its core features, by verifying the safety of the
higher-order program given in Figure 3.3. This example is of course rather
contrived, but it serves to showcase the core features of Iris. Notice that
we are using typewriter font for language-level terms, sans-serif font for
logic-level terms, and italic font for domains (corresponding to types in
our Coq formalization).10

The function mk_oneshot() allocates a oneshot (“write-once”) location
at x and returns a record c with two closures. (Formally, records are
syntactic sugar for pairs, and let-binding and sequencing are defined in
terms of immediately applied λ-terms.) The function c.set(n) sets the
location x to n, asserting that this has not happened before. We use CmpX
to ensure correctness of the check even if two threads concurrently try to
set the location. The function c.check() records the current state of the
location x and then returns a closure which, if the location x has already
been initialized, asserts that it does not change.

Intuitively, the assertion in c.check can never fail because x is hidden
from the client. It can only be mutated by calling c.set, which will not do
anything if x already contains an inr. In contrast, the assertion in c.set
can fail, the client just has to call the function twice. The specification
for the example is thus going to express that c.set must only be called
once, but c.check can be called arbitrarily often.11

9 For the curious, this is imple-
mented in the Iris Coq repository in
theories/heap_lang/lib/spawn.v.
Parallel composition is implemented
in theories/heap_lang/lib/par.v.

10 We do not distinguish language-
level and logic-level variables in
their font. This choice is justified in
§7.3.

11 This goes to show that we could
in fact replace the CmpX by a normal
store. We use CmpX with an asser-
tion on the old value to ensure that
any safety specification for c.set has
to enforce this “one-shot” property.

28

Part I: Iris Chapter 3: An introduction to Iris

Example code.

mk_oneshot := λ .

let x = ref(inl(0));

{ set = λn. let (_, b) = CmpX(x, inl(0), inr(n));
assert(b),

check = λ . let y = ! x;
λ . let y′ = ! x;

match y with
inl()⇒ ()
| inr()⇒ assert(y = y′)
end }

Example specification.

{True}
mk_oneshot(){
c. ∃T. T ∗

(
∀v. {T} c.set(v) {True}

)
∗

{True} c.check() {f. {True} f() {True}}

}

Figure 3.3: Example code and
specification.

Specifying the example. The specification in Figure 3.3 looks a little
funny with most pre- and postconditions being True. The reason for this
is that all we are aiming to show here is that the code is safe, i.e., that the
assertions “succeed”. Recall that in our semantics12, assert(e) gets stuck
if e evaluates to false. Correspondingly, we have the rule hoare-assert
for assert(true), but no corresponding rule for assert(false). In Iris,
Hoare triples imply safety,13 so we do not need to impose any further
conditions: just showing any triple will mean that, if the precondition of
the triple is satisfied, all assertions will pass.

We use nested Hoare triples to express that mk_oneshot() returns
closures: Since Hoare triples are just propositions, we can put them into
the postcondition of mk_oneshot() to describe what the client can assume
about c. The postcondition also has to express that c.set(n) can only be
called once. We do this here by saying there there exists some proposition
T (for “token”) that represents the right to call c.set(n). We initially hand
out that right as part of the postcondition of mk_oneshot(), and then we
consume that right in the precondition of c.set(n). Calling c.set(n) twice
would thus require giving up ownership of T twice, but propositions in a
separation logic can, in general, not be duplicated (P ⇒ P ∗ P does not
hold)—so T can only be used once. Except for this restriction, since Iris
is a concurrent program logic, the specification for mk_oneshot() actually
permits clients to call c.set(n) and c.check(), as well as the closure f
returned by c.check(), concurrently from multiple threads and in any
combination.

It is worth pointing out that Iris is an affine separation logic, which
means that it enjoys the weakening rule P ∗ Q ⇒ P .14 Intuitively, this

12 Figure 3.1 on page 26

13 This is to say, they imply that
the program will not get stuck.
However, it is also possible to use
Iris with a variant of Hoare triples
that permits programs getting
stuck.

14 This is also sometimes called
intuitionistic separation logic, in
contrast to classical separation logic
which does not support weakening.
However, when applied to Iris,
this terminology does not make
much sense. See the end of §6.2 for
further discussion.

29

Part I: Iris Chapter 3: An introduction to Iris

rule lets one throw away resources; for example, in the postcondition of a
Hoare triple one can throw away ownership of unused memory locations.
Since Iris is affine, it does not have the Emp connective, which asserts
ownership of no resources;15 rather, Iris’s True connective, which describes
ownership of any resources, is the identity of separating conjunction (i.e.,
P ∗ True⇔ P). We discuss this design choice further in §6.2.

High-level proof structure. To perform this proof, we need to somehow
encode the fact that we are only performing a oneshot update to x. To
this end, we will allocate a ghost location a

γ with name γ and value a,
which essentially mirrors the current state of x. This may at first sound
rather pointless; why should we record a value in the ghost state that is
exactly the same as the value in a particular physical location?

The point is that using ghost state lets us choose what kind of sharing
is possible on the location. For a physical location `, the proposition
` 7→ v expresses full ownership of ` (and hence the absence of any sharing
of it). In contrast, Iris permits us to choose whatever kind of structure
and ownership we want for our ghost location γ; in particular, we can
define it in such a way that, although the contents of γ mirror the contents
of x, we can freely share ownership of γ once it has been initialized (by
a call to set). This in turn will allow the closure returned by check to
own a piece of γ witnessing its value after initialization. We will then
have an invariant (see §3.2) tying the value of γ to the value of x, so we
know which value that closure is going to see when it reads from x, and
we know that that value is going to match y.

Another way to describe what is happening is to say that we are
applying the idea of fictional separation:16 The separation on γ (after set
was called) is “fictional” in the sense that multiple threads can own parts
of γ and therefore manipulate the same shared variable x, the two being
tied together by an invariant.

With this high-level proof structure in mind, we now explain how
exactly ownership and sharing of ghost state can be controlled.

3.1 Ghost state in Iris: Resource algebras

Iris allows one to use ghost state via the proposition a
γ , which asserts

ownership of a piece a of a ghost location γ. The flexibility of Iris stems
from the fact that for each ghost location γ, the user of the logic can
pick the type M of its value a, instead of this type being fixed in advance
by the logic. However, M cannot just be any type, it must have enough
structure to be suited as a notion of “ownership” and to make a

γ useful,
namely:

• It should be possible to compose ownership of different threads. To
this end, the type M should have an operator (·) for composition. The
crucial rule for this operation in the logic is a · b γ ⇔ a

γ ∗ b γ (as
we will see with ghost-op in Figure 3.5).

• Combinations of ownership a
γ ∗ b γ that do not make sense should

be ruled out by the logic (i.e., they should entail False). This happens,

15 O’Hearn, Reynolds, and Yang,
“Local reasoning about programs
that alter data structures”, 2001
[ORY01].

16 Dinsdale-Young, Gardner, and
Wheelhouse, “Abstraction and
refinement for local reasoning”, 2010
[DGW10]; Dinsdale-Young et al.,
“Concurrent abstract predicates”,
2010 [Din+10].

30

Part I: Iris Chapter 3: An introduction to Iris

for example, when multiple threads claim to have ownership of an
exclusive resource. To make this possible, the operator (·) should be
partial.

Composition of ownership should moreover be associative and commu-
tative, to reflect the associative and commutative nature of separating
conjunction.17 For that reason, partial commutative monoids (PCMs) have
become the canonical structure for representing ghost state in separation
logics. In Iris, we are deviating slightly from this, using our own notion of a
resource algebra (RA), whose definition is in Figure 3.4. Every PCM is an
RA, but not vice versa—and as we will see in our example, the additional
flexibility afforded by RAs results in additional logical expressiveness.

A resource algebra (RA) is a tuple (M,V : M → Prop, |−| : M →M?, (·) : M ×M →M) satisfying:

∀a, b, c. (a · b) · c = a · (b · c) (ra-assoc)
∀a, b. a · b = b · a (ra-comm)
∀a. |a| ∈M ⇒ |a| · a = a (ra-core-id)
∀a. |a| ∈M ⇒ ||a|| = |a| (ra-core-idem)
∀a, b. |a| ∈M ∧ a 4 b⇒ |b| ∈M ∧ |a| 4 |b| (ra-core-mono)
∀a, b. V(a · b)⇒ V(a) (ra-valid-op)

where M? := M] {⊥} with a? · ⊥ := ⊥ · a? := a?

a 4 b := ∃c ∈M. b = a · c (ra-incl)
a B := ∀c? ∈M?. V(a · c?)⇒ ∃b ∈ B. V(b · c?)
a b := a {b}

A unital resource algebra (uRA) is a resource algebra M with an element ε satisfying:

V(ε) ∀a ∈M. ε · a = a |ε| = ε

Figure 3.4: Resource algebras.
There are two key differences between RAs and PCMs:

1. Instead of partiality, RAs use validity to rule out invalid combinations of
ownership. Specifically, there is a predicate V : M → Prop identifying
valid elements. Validity is compatible with the composition operation
(ra-valid-op).
This take on partiality is necessary when defining the structure of
higher-order ghost state,18 i.e., ghost state whose structure depends on
iProp, the type of propositions of the Iris logic.19 Making composition
(·) a total operation is also a good choice for mechanization in Coq,
where partial functions have to be handled fully explicitly (working
with option everywhere), which is rather painful.20

2. Instead of having a single unit ε that is an identity to every element
(i.e., that enjoys ε · a = a for any a), RAs have a partial function |−|
that assigns to an element a its (duplicable) core |a|, as demanded by
ra-core-id. We further demand that |−| is idempotent (ra-core-
idem) and monotone (ra-core-mono) with respect to the extension
order, defined similarly to that for PCMs (ra-incl).

17 This also reflects the associativity
and commutativity of parallel
composition.

18 Jung et al., “Higher-order ghost
state”, 2016 [Jun+16]; Jung et al.,
“Iris from the ground up: A mod-
ular foundation for higher-order
concurrent separation logic”, 2018
[Jun+18b].

19 Note the difference between
Prop, which denotes the type of
propositions of the meta-logic (e.g.,
Coq), and iProp, which denotes the
type of propositions of Iris.

20 This is also why we did not follow
the alternative approach of making
composition a 3-place relation
instead of a function (see §7.2 for a
more in-depth comparison).

31

Part I: Iris Chapter 3: An introduction to Iris

An element can have no core, which is indicated by |a| = ⊥. In order
to conveniently deal with partial cores, we use the metavariable a? to
range over elements of M? := M] {⊥} and lift the composition (·) to
M?. As we will see in §4.1, partial cores help us to build interesting
composite RAs from smaller primitives.

In the special case that an RA does have a unit ε such that ε ·a = a and
moreover |ε| = ε, we call it a unital RA (uRA). From ra-core-mono,
it follows that the core of a uRA is a total function, i.e., |a| 6= ⊥.

Resource algebras are additionally equipped with an “inclusion rela-
tion”: a 4 b says that b is a “bigger” resource, i.e., that it is obtained by
composing a with some other resource c. Note that inclusion is in general
not reflexive, but it is reflexive for unital RAs.21 In the context of PCMs,
this relation is also often called “extension order”.

We also define a notion of frame-preserving updates a B, which we
will explain after introducing our example RA.

A resource algebra for our example. We will now define the RA that can
be used to verify the example, which we call the oneshot RA.22 The goal
of this RA is to appropriately reflect the state of the physical location x.
The carrier is defined using a datatype-like notation as follows:23

M := pending(q : Q ∩ (0, 1]) | shot(n : Z) |

The two important states of the ghost location are: pending(q), to
represent the fact that the single update has not yet happened, and
shot(n), saying that the location has been set to n. The fraction q here
(restricted to be strictly positive and not exceed 1) provides the ability to
split ownership of pending(_). This works similar to fractional permissions
for the points-to assertion (discussed in §2.3).

We need an additional element to account for partiality; it is the
only invalid element:

V(a) := a 6=

The most interesting part of an RA is, of course, its composition: What
happens when ownership of two threads is combined?24

pending(q1) · pending(q2) :=

pending(q1 + q2) if q1 + q2 ≤ 1
 otherwise

shot(n) · shot(m) :=

shot(n) if n = m

 otherwise

This definition has the following important properties:

V(pending(1) · a) ⇒ False (pending-excl)
pending(q1 + q2) = pending(q1) · pending(q2) (pending-split)

V(shot(n) · shot(m)) ⇒ n = m (shot-agree)
shot(n) = shot(n) · shot(n) (shot-idem)

21 The use of 4 for an irreflexive
relation is an unfortunate accident
of the development of the RA
axioms over time. We barely ever
use inclusion for non-unital RAs,
so in practice this is not much of a
problem. We considered changing
the definition of inclusion so that it
always is reflexive, but then other
useful properties fail to hold, such
as (a1, b1) 4 (a2, b2) ⇐⇒ a1 4
a2 ∧ b1 4 b2.

22 Here, we give an explicit def-
inition of the oneshot RA. This
may feel a bit verbose, and indeed,
in §4.1 we show that this RA can
in fact be defined using a couple of
combinators.
Note that the use of fractions is

not strictly necessary for the exam-
ple (we could use the “authoritative”
mechanism introduced in §4.4 in-
stead), but makes the RA easier to
explain.

23 Notations for invalid elements
have not been entirely consistent
among Iris papers. In this disserta-
tion we use to denote the invalid
element of an RA (if the RA has
such an element), ⊥ to denote the
absence of a core, and ε to denote
the global unit (if it exists).

24 Compositions not defined by the
following equation are mapped to .

32

Part I: Iris Chapter 3: An introduction to Iris

The property pending-excl says that composition of pending(1) with
anything else is invalid. As a result of this, if we own pending(1), we
know that no other thread can own another part of this location. With
pending-split, we also know we can, for example, turn pending(1) into
separate ownership of pending(1/2) and pending(1/2), and recombine them
later to get back full ownership. This will be useful in the proof.

Furthermore, shot-agree says that composition of two shot(−) el-
ements is valid only if the parameters (i.e., the values picked for the
oneshot) are the same. This reflects the idea that once a value has been
picked, it becomes the only possible value of the location; every thread
agrees on what that value is. Finally, shot-idem says that we can also
duplicate ownership of the location as much as we want, once it has been
set to some n. This allows us to share ownership of this piece of ghost
state among any number of threads.

We also have to define the core |−|:

|pending(q)| := ⊥ |shot(n)| := shot(n) | | :=

Note that pending(q) has no suitable unit element (pending(0) is not an
element of the carrier M), so we assign no core.

This completes the definition of the oneshot RA. It is now straightfor-
ward to verify that this RA satisfies the RA axioms.

Frame-preserving updates. So far, we have defined which states our ghost
location can be in and how the state of the location can be distributed
across multiple threads. What is still missing, however, is a way of
changing the ghost location’s state. The key is that we want to do this
in a thread-local way, but each thread only owns some piece of the ghost
location. The overall state is obtained by composing all these pieces. Iris
always maintains the invariant that the overall state of all ghost locations
is a valid RA element. When the ghost state owned by some thread
changes, it is important that this global invariant is maintained. We call
such well-behaved local ghost state changes frame-preserving updates.25

The simplest form of frame-preserving update is deterministic. We
can do a frame-preserving update from a to b (written a b) when the
following condition is met:

∀c? ∈M?. V(a · c?)⇒ V(b · c?)

In other words, for any resource (called a frame) c? ∈ M? such that a
is compatible with c? (i.e., V(a · c?)), it has to be the case that b is also
compatible with c?.

For example, with our oneshot RA it is possible to pick a value if it is
still pending, provided we fully own the pending state (and not just some
fraction of it):

pending(1) shot(n) (oneshot-shoot)

The reason for this is pending-excl: pending(1) actually is not compatible
with any element; composition always yields . It is thus the case that
from V(pending(1) · c?), we know c? = ⊥. This makes the rest of the proof
trivial.

25 Frame-preserving updates are
equivalent to semantic entailment
in the Views framework [Din+13].

33

Part I: Iris Chapter 3: An introduction to Iris

If we think of the frame c? as being the composition of the resources
owned by all the other threads, then a frame-preserving update is guaran-
teed not to invalidate (the composition of) the resources of all running
threads. The frame can be ⊥ if no other thread has any ownership of this
ghost location.26 By doing only frame-preserving updates, we know we
will never “step on anybody else’s toes”.27

In general, we also permit non-deterministic frame-preserving updates
(written a B) where the target element b is not fixed a priori, but
instead a set B is fixed and some element b ∈ B is picked depending on
the current frame. This is formally defined in Figure 3.4. We will discuss
non-deterministic frame-preserving updates further when we encounter
our first example of such an update in §4.1.

Ownership and knowledge. Notice that when talking about shot, we use
the term “ownership” in a rather loose sense: we say that any element of
an RA can be “owned”. For elements like shot(n) that satisfy the property
a = a · a, owning a is equivalent to owning multiple copies of a—in this
particular case, ownership is no longer exclusive, and it may be more
appropriate to call this knowledge. We can hence think of shot(n) as
representing the knowledge that the value of the location has been set
to n.

At the same time, knowledge of shot(n) is inherently connected with
the (non-duplicable) ownership of pending(q), in the sense that if we own
pending(1), we can use oneshot-shoot to turn ownership into knowledge
by picking an n. pending(q) and shot(n) are also linked in the sense
that they are mutually exclusive: having both at the same time is a
contradiction (pending(q) · shot(n) =). As a consequence, the transition
from pending to shot is irreversible: once it happened, that fact becomes
freely shareable knowledge, and we can never go back again.

As we can see, resource algebras use the same mechanism to serve a
double purpose: modeling both (1) ownership of resources and (2) sharing
of knowledge. This unified mechanism is more powerful than both of these
aspects would be separately, because resource algebras can link ownership
and knowledge in intricate ways. This is, in fact, the explanation for
why fancy monoids (resource algebras) are all you need to model both
resources and protocols (as alluded to in §2).

Proof rules for ghost state. Resource algebras are embedded into the
logic using the proposition a

γ , which asserts ownership of a piece a of
the ghost location γ. Validity is expressed using the proposition V(a).28
The main connective for manipulating these ghost assertions is called
a view shift:29 P VE Q says that, given resources satisfying P , we can
change the ghost state and end up with resources satisfying Q. (We will
come back to the mask annotation E in §3.2.) Intuitively, view shifts are
like Hoare triples, but without any code—there is just a precondition and
a postcondition. They do not need any code because they only touch the
ghost state, which does not correspond to any operation in the actual
program. In the following, we discuss the ghost state proof rules shown
in Figure 3.5.

26 Note that the notion of frame-
preserving updates is defined for
RAs in general, and not just uRAs.
To that end, we cannot rely on
the presence of a global unit ε
to account for the absence of a
frame (or the absence of another
thread with ownership of the ghost
location).

27 This also implies that every Iris
proposition is stable in the sense
that it cannot be invalidated by
actions of other parties (than the
one owning the proposition). This is
in contrast to many other variants
of CSL; we will come back to this
point in §7.1.

28 Since we ignore higher-order
ghost state for this dissertation, we
can conflate validity in the logic
and on the meta-level. For a fully
precise description of Iris [Jun+18b],
these two concepts must be properly
distinguished.

29 View shifts are derived from
the notion of repartitioning in
CAP [Din+10]. As far as we know,
the term “view shift” was first used
in HoCAP [SBP13] referring to
the Views framework [Din+13].
In related work, view shifts are
sometimes called ghost moves.

34

Part I: Iris Chapter 3: An introduction to Iris

Ghost state.
ghost-alloc

V(a)
TrueVE ∃γ. a

γ

ghost-op
a · b γ ⇔ a

γ ∗ b γ
ghost-valid
a
γ ⇒ V(a)

ghost-update
a B

a
γ
VE ∃b ∈ B. b

γ

View shifts.

hoare-vs
P VE P

′ {P ′} e {v. Q′}E ∀v. Q′ VE Q
{P} e {v. Q}E

vs-refl
P VE P

vs-trans
P VE Q QVE R

P VE R

vs-frame
P VE Q

P ∗RVE Q ∗R

Invariants.

inv-alloc
P VE P

N

vs-inv-timeless
P ∗Q1 VE\N P ∗Q2 N ⊆ E timeless(P)

P
N ∗Q1 VE P

N ∗Q2

hoare-inv-timeless
{P ∗Q1} e {v. P ∗Q2}E\N atomic(e) timeless(P) N ⊆ E{

P
N ∗Q1

}
e
{
v. P

N ∗Q2

}
E

Persistent propositions.

persistent-dup
persistent(P)
P ⇔ P ∗ P

hoare-ctx
{P ∗Q} e {v. R}E persistent(Q)

Q ` {P} e {v. R}E

vs-ctx
P ∗QVE R persistent(Q)

Q ` P VE R

persistent-inv
persistent(P N)

persistent-ghost
|a| = a

persistent(a γ)
Structural rules for
∨, ∧, ∗, ∀, ∃.

Timeless propositions.

timeless-ghost
timeless(a γ)

timeless-heap
timeless(` 7→ v)

Structural rules for
∨, ∧, ∗, ∀, ∃.

Figure 3.5: Example Iris proof
rules.

The rule ghost-alloc can be used to allocate a new ghost location,
with an arbitrary initial state a so long as a is valid according to the chosen
RA. The rule ghost-update says that we can perform frame-preserving
updates on ghost locations, as described above.

The proof rule ghost-op says that ghost state can be separated (in
the sense of separation logic) following the composition operation (·)
defined for the RA, and ghost-valid encodes the fact that only valid
RA elements can ever be owned.

All the usual structural rules for Hoare triples also hold for view shifts,
like framing (vs-frame). The rule hoare-vs illustrates how view shifts
are used in program verification: we can apply view shifts in the pre-
and postconditions of Hoare triples. This corresponds to composing the
“triples for ghost moves” (i.e., view shifts) with a Hoare triple for e. Doing
so does not change the expression in the triple because the ghost state
actions performed by the view shifts do not speak about any actual code.

35

Part I: Iris Chapter 3: An introduction to Iris

hoare-vs is basically the normal rule of consequence of Hoare logic,
except that it uses view shifts instead of implications. Still, there is
fundamental difference between view shifts (V) on the one hand and
implications (⇒) and magic wands (−∗) on the other: the implication
P ⇒ Q says that whenever P holds, Q necessarily holds too in the same
state. In contrast, the view shift P V Q says that whenever P holds, Q
holds under the proviso that we change the ghost state.30 Hence, unlike
implication and wand, the only way to eliminate a view shift is through
the rule hoare-vs.

3.2 Invariants

Now that we have set up the structure of our ghost location γ, we have
to connect the state of γ to the actual physical value of x. This is done
using an invariant.

An invariant31 is a property that holds at all times: each thread
accessing the state may assume the invariant holds before each step of its
computation, but it must also ensure that the invariant continues to hold
after each step. Since we work in a separation logic, the invariant does
not just “hold”; it expresses ownership of some resources, and threads
accessing the invariant get access to those resources. The rule hoare-
inv-timeless, basically the Iris version of critical-region from §2.2
(page 21), realizes this idea as follows:

{P ∗Q1} e {v. P ∗Q2}E\N atomic(e) timeless(P) N ⊆ E{
P
N ∗Q1

}
e
{
v. P

N ∗Q2

}
E

This rule is quite a mouthful, so we will go over it carefully. First, there
is the proposition P

N , which states that P (an arbitrary proposition) is
maintained as an invariant. The rule says that having this proposition
in the precondition permits us to access the invariant, which involves
acquiring ownership of P before the verification of e and giving back
ownership of P after said verification. Crucially, we require that e is
atomic, meaning that this computation is guaranteed to complete in
a single step. This is essential for soundness: the rule allows us to
temporarily use the ownership held by the invariant and even violate said
invariant, but after a single atomic step (i.e., before any other thread
could take a turn and notice that the invariant is broken), we have to
establish the invariant again.

vs-inv-timeless is very similar to hoare-inv-timeless: invariants
may be accessed not just when reasoning about atomic expressions, but
also when performing a “ghost update” without any code being executed
at all.

Notice that P
N is just another kind of proposition, and it can be used

anywhere that normal propositions can be used—including the pre- and
postconditions of Hoare triples, and invariants themselves, resulting in
nested invariants. The latter property is sometimes referred to as impred-
icativity. We will discuss the full proof rules for impredicative invariants
in §5.1, which will require the introduction of a later modality. Until then,
we work with simplified rules that require the invariant proposition P

30 To give a comparison with func-
tional programming, implication-
s/wands correspond to pure func-
tions while view shifts are monadic
(also see §5.5).

31 Ashcroft, “Proving assertions
about parallel programs”, 1975
[Ash75].

36

Part I: Iris Chapter 3: An introduction to Iris

to be timeless, which rules out impredicativity. Intuitively, everything
“first-order” is timeless, including assertions like heap ownership or ghost
ownership.32 Timelessness is preserved by most logical connectives, i.e., if
P and Q are both timeless then so is P ∗Q et cetera. In contrast, Hoare
triples, view shifts and invariant assertions themselves are not timeless,
but it is rare to encounter those inside an invariant.33

Finally, we come to the mask E and namespace N : they avoid the issue
of reentrancy. The restriction to atomic expressions e in the rule above
makes sure no two threads can access the same invariant at the same time,
but we still have to make sure that the same invariant is not accessed twice
at the same time by the same thread, which would incorrectly duplicate
the underlying resource. To this end, each invariant is allocated in a
namespace N . Furthermore, each Hoare triple is annotated with a mask
to keep track of which invariant namespaces are still enabled.34 Accessing
an invariant removes its namespace from the mask, ensuring that it cannot
be accessed again in a nested fashion.

Invariants are created using the inv-alloc rule (Figure 3.5): whenever
a proposition P has been established, it can be turned into an invariant.
This can be viewed as a transfer of the resources backing P from a single
thread to a shared space accessible by all threads. Creating an invariant
is a view shift; this hints at the fact that invariants themselves are yet
another form of (fancy) ghost state.35

3.3 Persistent propositions

We have seen that Iris can express both ephemeral ownership of exclusive
resources (like ` 7→ v or pending(1) γ), as well as knowledge of prop-
erties like P

N and shot(n) γ that, once true, hold true forever. We
call the latter class of propositions persistent. Further examples of per-
sistent propositions are validity (V(a)), equality (t = u), Hoare triples
({P} e {v. Q}) and view shifts (P V Q). Persistence is preserved by most
logical connectives, i.e., if P and Q are both persistent then so is P ∗Q and
so on. Persistent propositions can be freely duplicated (persistent-dup);
the usual restriction of resources being usable only once does not apply
to them.

Both ownership and knowledge are forms of ghost state in Iris. This
versatility of ghost ownership is also visible in its relation to persistence:
while ghost ownership of some elements (like pending(q)) is ephemeral,
ownership of a core is persistent (persistent-ghost). This manifests
the idea mentioned in §3.1 that RAs can express both ownership and
knowledge in one unified framework, with knowledge merely referring to
ownership of a persistent resource. In this view, the core |a| is a function
which extracts the knowledge out of RA element a. In the proof of check,
persistent ghost ownership will be crucial.

One important role of persistent propositions is related to nested
Hoare triples: as expressed by the rule hoare-ctx, the nested Hoare
triple may only use propositions Q from the “outer” context that are
persistent. Persistence guarantees that Q will still hold when the Hoare

32 The exception here is higher-order
ghost state, see §6.1

33 It may seem odd that we pay the
high cost of the later modality when
actually nesting invariants is a rare
thing to do. However, while rare,
putting invariants or view shifts into
invariants is occasionally needed,
and moreover prior work showed
that the book-keeping required to
make sure that invariants do not
get nested in a higher-order logic
is quite heavy (Svendsen, Birkedal,
and Parkinson, “Modular reasoning
about separation of concurrent data
structures”, 2013 [SBP13]).

34 By convention, the absence of
a mask means we are using the
full mask (>) containing all the
namespaces. This includes the
specification in Figure 3.3.

35 Krebbers et al., “The essence of
higher-order concurrent separation
logic”, 2017 [Kre+17].

37

Part I: Iris Chapter 3: An introduction to Iris

triple is “invoked” (i.e., when the code it specifies is executed), even if
that happens multiple times.

Closely related to persistence is the notion of duplicable propositions,
i.e., propositions P for which one has P ⇔ P ∗ P . This is a strictly
weaker notion, however: not all duplicable propositions are persistent. For
example, considering the fractional points-to connective ` q7−→ v mentioned
in §2.3, the proposition ∃q. ` q7−→ v is duplicable (which follows from halving
the fractional permission q), but it is not persistent.36 Another very
similar example is ∃q. pending(q) γ . Intuitively, the proof of P ⇒ P ∗ P
for these propositions works by splitting the resource into smaller and
smaller pieces using rules like pending-split; but none of the resources
satisfying these propositions are themselves duplicable (in the sense of
a = a · a) as would be required for a persistent proposition: we have seen
that shot(n) = shot(n) · shot(n) (shot-idem); no such equation holds for
pending(q).

3.4 Proof of the example

We have now seen enough features of Iris to proceed with the actual
verification problem outlined in Figure 3.3. We repeat the desired specifi-
cation and show a Hoare outline of the proof in Figure 3.6.37 We made
all the masks explicit in the specification. The mask > indicates that all
invariants are enabled. The proof outline itself shows all the resources
that are owned at the respective program point, and also indicates the
current mask in the subscript.

Proof of mk_oneshot. First of all, from the allocation performed by the
ref construct, we obtain x 7→ inl(0) via hoare-alloc. Next, we use
ghost-alloc to allocate a new ghost location γ with the structure of
the oneshot RA defined above, picking the initial state pending(1).38 We
split pending(1) into two halves, each represented as pending(1/2), using
ghost-op. Finally, we establish and create the following invariant:

I := (x 7→ inl(0) ∗ pending(1/2) γ) ∨ (∃n. x 7→ inr(n) ∗ shot(n) γ)

Since x is initialized with inl(0), the invariant I initially holds. We use
up most of our resource when establishing the invariant with inv-alloc,
but we keep one half of the ghost variable.

What remains to be done is establishing our postcondition, which
consists of an existentially quantified T and two Hoare triples. We pick T
to be pending(1/2) γ , matching our remaining resources (except for the
invariant I

N). Thanks to hoare-ctx, we can use the freshly allocated
invariant for the remaining postcondition, the two triples. In the proof
outline, hoare-ctx allows us to keep resources when we “step over a λ”,
but only when the resources are persistent. This corresponds to the fact
that the function can be called several times, so that the resources should
not be used up by one call.

Proof of set. The function set accesses location x, so we start by
opening the invariant around the CmpX. CmpX is atomic, so the rule

36 If we wanted to change this, we
would have to give up one or more
proof rules for persistence. Specif-
ically, of the rules in Figure 5.4
on page 69, we would at least lose
commutativity of persistence with
existential quantification, because
∃q. ` q7−→ v would be persistent but
`
q7−→ v certainly would not [BB17].

(The other direction still works.)
From our experiments so far, it
seems likely that we would also
lose commutativity with universal
quantification (in the direction
of moving the quantifier in). See
https://gitlab.mpi-sws.org/iris/
iris/-/issues/224 for further
discussion.

37 Between curly braces and in
green, we show the current context
at each step in the proof. The code
that is being verified is in blue.

38 This is implicitly using hoare-vs
to justify applying a view shift while
verifying a Hoare triple.

38

https://gitlab.mpi-sws.org/iris/iris/-/issues/224
https://gitlab.mpi-sws.org/iris/iris/-/issues/224

Part I: Iris Chapter 3: An introduction to Iris

Example specification.

{True}
mk_oneshot(){
c. ∃T. T ∗

(
∀v. {T} c.set(v) {True}>

)
∗

{True} c.check() {f. {True} f() {True}>}>

}
>

Example proof outline.
let x = ref(inl(0));{

x 7→ inl(0) ∗ pending(1) γ
}
>

(hoare-alloc, ghost-alloc){
x 7→ inl(0) ∗ pending(1/2) γ ∗ pending(1/2) γ

}
>

(ghost-op){
I
N ∗ pending(1/2) γ

}
>

(inv-alloc)
where I := (x 7→ inl(0) ∗ pending(1/2) γ) ∨ (∃n. x 7→ inr(n) ∗ shot(n) γ)

Pick T := pending(1/2) γ . We have to prove T (easy) and two Hoare triples. (hoare-ctx)

{ set = λn.{
I
N ∗ T

}
>

{I ∗ T}>\N (hoare-inv-timeless){
x 7→ inl(0) ∗ pending(1/2) γ ∗ pending(1/2) γ

}
>\N

(ghost-op, ghost-valid)

let (_, b) = CmpX(x, inl(0), inr(n));{
x 7→ inr(n) ∗ shot(n) γ ∗ b = true

}
>\N

(hoare-cmpx-suc, ghost-op, ghost-update)

{I ∗ b = true}>\N{
I
N ∗ b = true

}
>

assert(b) (hoare-assert)
{True}>

check = λ .{
I
N}
>

{I}>\N let y = ! x; {I ∗ P}>\N (hoare-inv-timeless, hoare-load, ghost-op)
where P := y = inl(0) ∨ (∃n. y = inr(n) ∗ shot(n) γ){

I
N ∗ P

}
>

λ .{
I
N ∗ P

}
>

{I ∗ P}>\N (hoare-inv-timeless)
let y′ = ! x; (hoare-load){
I ∗
(
y = inl(0) ∨ (∃n. y = y′ = inr(n))

)}
>\N (ghost-op, ghost-valid){

I
N ∗

(
y = inl(0) ∨ (∃n. y = y′ = inr(n))

)}
>

match y with
inl()⇒ ()
| inr()⇒ assert(y = y′) (hoare-assert)
end
{True}>

}
Figure 3.6: Example proof
outline.

39

Part I: Iris Chapter 3: An introduction to Iris

hoare-inv-timeless applies.39 This changes our current mask to > \N .
We also obtain I, and perform case distinction on the disjunction.

If we are in the right-hand case (the one with shot), our resources are
described by

(∃n. x 7→ inr(n) ∗ shot(n) γ) ∗ pending(1/2) γ

From this, we can derive a contradiction: using ghost-op, we can obtain
shot(n) · pending(1/2) γ which equals

γ . According to ghost-valid,
this is impossible.

Thus we can conclude that we are in the left disjunct, and the CmpX
will succeed (hoare-cmpx-suc). After the CmpX, we have the following
(using ghost-op to merge the two halves of pending back together):

x 7→ inr(n) ∗ pending(1) γ

How can we reestablish the invariant I after this CmpX? Clearly, we
must pick the right disjunct, since x 7→inr(n). Hence we have to update
the ghost state to match the physical state. To this end, we apply ghost-
update with the frame-preserving update oneshot-shoot, which allows
us to update the ghost location to shot(n) if we own pending(1), which we
do. We then have I again and can finish the proof. Since CmpX succeeded,
the assertion is trivially verified with hoare-assert.

Notice that we could not complete the proof if set would ever change
x again, since oneshot-shoot can only ever be used once on a particular
ghost location. We have to be in the pending(_) state if we want to pick
the n in shot(n). This is exactly what we would expect, since check
indeed relies on x not being modified once it has been set to inr(n).

Proof of check. What remains is to prove correctness of check. We
open our invariant I to justify the safety of !x. This is immediate because
the invariant provides x 7→ no matter which side of the disjunction we
obtain. However, we will not immediately close I again. Instead, we will
have to acquire some piece of ghost state that shows that if we read an
inr(n), then x will not change its value. At this point in the proof, we
have the following proposition:

x 7→ y ∗(
(y = inl(0) ∗ pending(1/2) γ) ∨ (∃n. y = inr(n) ∗ shot(n) γ)

)
We use the identity shot(n) = shot(n) · shot(n) with ghost-op to show

that this logically implies:

x 7→ y ∗(
(y = inl(0) ∗ pending(1/2) γ) ∨

(∃n. y = inr(n) ∗ shot(n) γ ∗ shot(n) γ))
)

which in turn implies:

I ∗ (y = inl(0) ∨ (∃n. y = inr(n) ∗ shot(n) γ)︸ ︷︷ ︸
P

)

39 We indicate the nested nature
of the invariant rule by indenting
the part of the proof outline that
happens “inside” the invariant.

40

Part I: Iris Chapter 3: An introduction to Iris

We can thus reestablish the invariant I, but we keep P , the information
we gathered about y. The plan is to use this in the proof of the closure
that we return.

To do so, hoare-ctx requires us to show that P is persistent: as
discussed in §3.3, shot(n) γ and equality are persistent, and both disjunc-
tion and separating conjunction preserve persistence. This matches the
intuition that, once we observe that x has been set, we can then forever
assume it will not change again.

To finish this proof, let us look at the closure returned by check in
more detail: Again, we will open our invariant to justify the safety of ! x.
Our proposition then is I ∗ P . In order to proceed, we now distinguish
the possible cases in P and I.

Case 1 (P “on the left”): We have I ∗ y = inl(0). In this case, the
match will always pick the first arm, and there is nothing left to show.

Case 2 (P “on the right”, I “on the left”): We have:

x 7→ inl(0) ∗ pending(1/2) γ ∗ (∃n. y = inr(n) ∗ shot(n) γ)

We own both pending(1/2) and shot(n), which compose to . By
ghost-valid, this is a contradiction.

Case 3 (P “on the right”, I “on the right”): We have:

(∃m. x 7→ inr(m) ∗ shot(m) γ) ∗ (∃n. y = inr(n) ∗ shot(n) γ)

In particular, we obtain shot(n) · shot(m) γ . Using ghost-valid, this
yields V(shot(n) · shot(m)), implying n = m by shot-agree. We are
hence left with:

x 7→ inr(n) ∗ y = inr(n) ∗ shot(n) γ

In particular, we get that y′ = y = inr(n), i.e., the assertion in the
second match arm will succeed.

41

Chapter 4

Ghost state constructions

In the previous chapter we have seen that user-defined ghost state plays
an important role in Iris. Ghost state in Iris is defined through resource
algebras (RAs), at which we will have a more thorough look in this
chapter. First of all, in §4.1, we show that many frequently needed RAs
like the one we defined in the previous chapter can be constructed by
composing smaller, reusable pieces. In §4.2, we show how to make state-
transition systems with tokens, a general class of protocols, available in
Iris by defining them as an RA. In §4.3 we then show that the ownership
connective a

γ can in fact be defined in terms of an even more primitive
notion of “global” ghost ownership, without a built-in idea of a “name” γ.
We finish this chapter in §4.4 with a brief introduction to the authoritative
RA, arguably the most important resource algebra construction in Iris.

4.1 RA constructions

One of the key features of Iris is that it leaves the structure of ghost
state entirely up to the user of the logic. If there is the need for some
special-purpose RA, the user has the freedom to directly use it. However,
it turns out that many frequently needed RAs can be constructed by
composing smaller, reusable pieces—so while we have the entire space of
RAs available when needed, we do not have to construct custom RAs for
every new proof.

For example, looking at the oneshot RA from §3.1, it really does three
things:

1. It separates the allocation of an element of the RA from the decision
about what value to store there (oneshot-shoot).

2. While the oneshot location is uninitialized, ownership is tracked with
a fraction, i.e., at most one thread can fully own the location.

3. Once the value has been decided on, ownership turns into knowledge;
now the RA makes sure everybody agrees on that value.

We can thus decompose the oneshot RA into the sum, exclusive and
agreement RAs as described below. (In the definitions of all the RAs, the
omitted cases of composition and core are all .)

Fraction. The task of the fraction RA, Frac, is to reflect the idea of a re-
source that can be taken apart by splitting the “full” resource (represented
by 1) into smaller pieces:

43

Part I: Iris Chapter 4: Ghost state constructions

Frac := frac(q : Q ∩ (0, 1]) |

frac(q1) · frac(q2) :=

frac(q1 + q2) if q1 + q2 ≤ 1
 otherwise

V(a) := a 6=

|a| := ⊥

Notice the similarity between composition here and composition of pending
in §3.1.

However, the problem with this definition is that to even write frac(q),
we have to already establish that q is in the interval (0, 1]. For this reason,
we instead use the following definition, also avoiding an explicit invalid
element :

Frac := Q+

q1 · q2 := q1 + q2

V(a) := a ≤ 1
|a| := ⊥

Here, Q+ is the set of all strictly positive rational numbers. The set of
valid elements is the same as for our previous definition, but this time,
we do not have to prove q ≤ 1 to merely state that we own some resource:
resources like 5 exist, but are invalid. This will be useful in §4.4.

Agreement. Given a set X, the task of the agreement RA, Ag0(X), is
to make sure multiple parties can agree on which value x ∈ X has been
picked.1 We define Ag0 as follows:

Ag0(X) := ag0(x : X) |
V(a) := ∃x ∈ X. a = ag0(x)

ag0(x) · ag0(y) :=

ag0(x) if x = y

 otherwise

|ag0(x)| := ag0(x)

In particular, agreement satisfies the following property corresponding to
shot-agree:

V(ag0(x) · ag0(y))⇒ x = y (ag0-agree)

The only other properties we need are that ag0 is injective, and that all
valid RA elements are of the form ag0(_):

ag0(x) = ag0(y)⇒ x = y (ag0-inj)
V(a)⇒ ∃x. a = ag0(x) (ag0-uninj)

1 We call this Ag0 because Ag—the
full definition of the agreement
RA—is more complex, because it
has to support higher-order ghost
state (see §6.1). It is described
in “Iris from the ground up: A
modular foundation for higher-
order concurrent separation logic”
[Jun+18b].

44

Part I: Iris Chapter 4: Ghost state constructions

Sum. Given any two RAs M1 and M2, the sum RA, M1 + M2, formal-
izes the idea of “either this or that”:2

M1 + M2 := inl(a1 : M1) | inr(a2 : M2) |
V(a) := (∃a1 ∈M1. a = inl(a1) ∧ V1(a1)) ∨

(∃a2 ∈M2. a = inr(a2) ∧ V2(a2))
inl(a1) · inl(a2) := inl(a1 · a2)
inr(a1) · inr(a2) := inr(a1 · a2)

|inl(a1)| :=

⊥ if |a1| = ⊥
inl(|a1|) otherwise

|inr(a2)| :=

⊥ if |a2| = ⊥
inr(|a2|) otherwise

| | :=

Due to composition being a total function for RAs, we cannot immediately
equip the sum type with an RA structure; we have to add a element. If
composition were a three-place relation,3 this would not be needed; we
will come back to this in §7.2.

Oneshot. We can now define the general idea of the oneshot RA as
OneShot(X) := Frac + Ag0(X), and recover the RA for the example as
OneShot(Z). The old pending(q) corresponds to inl(q) and the old shot(n)
corresponds to inr(ag0(n)). The new oneshot RA contains some extra
invalid “junk” elements, like inl(), which did not exist before—but those
do not change any of the relevant properties of the RA.

In other words, what first seemed like a very special-case tool that we
had to introduce just to verify the example can actually be obtained by
composing some very general constructions that can be reused for a wide
range of verifications. The RA combinators that have been and will be
presented in this dissertation cover the vast majority of use-cases. By
composing RA combinators, the work of defining a resource algebra and
stating and verifying its key properties has to be done only once; users of
Iris mostly just have to plug together the pieces.

Frame-preserving updates and exclusive elements. Another advantage
of decomposing RAs into separate pieces is that for the frame-preserving
updates of these pieces, we can prove general laws. While the fraction
and agreement RAs permit no interesting frame-preserving updates, the
sum RA satisfies the following rules:

inl-update
a1 B1

inl(a1) {inl(b1) | b1 ∈ B1}

inr-update
a2 B2

inr(a2) {inr(b2) | b2 ∈ B2}

(These are non-deterministic updates, of which we will see a concrete
example later in this section.)

2 As before, compositions not
defined here yield .

3 Dockins, Hobor, and Appel,
“A fresh look at separation alge-
bras and share accounting”, 2009
[DHA09].

45

Part I: Iris Chapter 4: Ghost state constructions

However, these two rules are not sufficient to derive oneshot-shoot,
the frame-preserving update from our example in the previous chapter.
This update changes from the left summand to the right one:

inl(1) inr(ag0(x))

Such a frame-preserving update can be proven because inl(1) has no
frame, i.e., there is no c with V(inl(1) · c). The absence of a frame allows
us to pick any valid RA element on the right-hand side. It turns out that
we can easily generalize this idea to any RA: we say that an RA element
a is exclusive (or has no frame) if:

exclusive(a) := ∀c.¬V(a · c)

For exclusive elements we have the following generic frame-preserving
update:

exclusive-update
exclusive(a) V(b)

a b

Notice that the above frame-preserving update is only useful for an RA
with a partial core: exclusive(a) is always false for any valid RA element a
with |a| 6= ⊥, because then we have V(a · |a|) (by ra-core-id). Obtaining
frame-preserving updates for switching the “side” of a sum is one of our
key motivations for making the core a partial function instead of a total
function.

For the RAs we have defined so far, the following rules identify exclusive
elements:

frac-exclusive
exclusive(1)

inl-exclusive
exclusive(a1)

exclusive(inl(a1))

inr-exclusive
exclusive(a2)

exclusive(inr(a2))

Products and finite partial maps. Products can easily be equipped with
an RA structure by lifting composition and core pointwise, and requiring
all elements to be valid for V . Exclusiveness and frame-preserving updates
are likewise propagated pointwise; note that it suffices for any element of
the pair to be exclusive (this makes (1, x) exclusive for any x):

prod-update
ai Bi

(a1, . . . , an) {(a1, . . . , bi, . . . , an) | bi ∈ Bi}

prod-exclusive
exclusive(ai)

exclusive((a1, . . . , an))

For finite partial maps I fin−⇀M (or just finite maps for short) with some
RA M as their codomain, we can similarly lift composition pointwise,
taking care of partiality as needed. But first, we have to introduce some
notation: for some f : I fin−⇀ M , we write f(i) = ⊥ to indicate that no
value is associated with i, and we write dom(f) to denote the domain
of f , i.e., the set of all keys that have a value associated with them. The
domain always has to be finite, and I is assumed to be infinite. We use
(i 7→ a) ∈ f as notation for i ∈ dom(f) ∧ f(i) = a.

46

Part I: Iris Chapter 4: Ghost state constructions

Now we can define:

V(f) := ∀(i 7→ a) ∈ f. V(a)

f1 · f2 := λi.

f1(i) · f2(i) if i ∈ dom(f1) ∩ dom(f2)
f1(i) if i ∈ dom(f1) \ dom(f2)
f2(i) if i ∈ dom(f2) \ dom(f1)
⊥ otherwise

|f | := λi.

|f(i)| if i ∈ dom(f) ∧ |f(i)| 6= ⊥
⊥ otherwise

It is easy to verify that f1 · f2 and |f | have finite domain if f1, f2 and f
do, respectively.

The following laws hold for frame-preserving updates in finite maps:

fmap-update
a B

f [i← a] {f [i← b] | b ∈ B}

fmap-alloc
V(a)

f {f [i← a] | i /∈ dom(f)}

fmap-alloc-dep
∀i. V(g(i))

f {f [i← g(i)] | i /∈ dom(f)}

Here, we use f [i← a] as notation for a function that is equal to f
everywhere except for i, where it returns a. In other words, this “stores”
the value a at i. The rule fmap-update expresses pointwise lifting of
updates to the finite map.

Notice that fmap-alloc is our first original non-deterministic frame-
preserving update: we cannot pick the index i of the new element in
advance because it depends on the frame. Instead, we are guaranteed
to extend f at some fresh index i being mapped to a. This is a form of
angelic non-determinism4 because we can assume that some value for i is
picked that “makes everything work”, and because I is infinite we know
that such a choice is always possible.

fmap-alloc-dep takes this one step further by permitting the initial
value of the freshly allocated map entry to depend on the index i it is
allocated at. The proof of this tricky-looking rule is not complicated at
all: just like for fmap-alloc, the definition of frame-preserving updates
says that we learn what the frame g is; then we pick some fresh index i
that is used in neither f nor g and extend f with [i← g(i)].

Exclusive RA and the heap. Before looking at a more complicated RA
construction, we briefly want to describe how the standard separation
logic heap with disjoint union for its composition can be defined.

For this, we need one more RA construction: given a set X, the task
of the exclusive RA, Ex(X), is to make sure that one party exclusively
owns a value x ∈ X. We define Ex as follows:

Ex(X) := ex(x : X) |
V(a) := a 6=

|ex(x)| := ⊥

Composition is always to ensure that ownership is exclusive.

4 Broy and Wirsing, “On the alge-
braic specification of nondetermin-
istic programming languages”, 1981
[BW81].

47

Part I: Iris Chapter 4: Ghost state constructions

We also have that elements of the exclusive RA are, well, exclusive:
ex-exclusive
exclusive(ex(x))

Now consider the following RA (for some notion of “locations” and
“values”):

Heap := Loc fin−⇀ Ex(Val)

If we only focus on the valid elements of Heap, this is the same as a finite
partial map from locations to values. When composing two valid heaps,
we compose the exclusively owned values pointwise. This means that if
they overlap, we will be composing two ex(v), which results in . So, the
resulting heap is valid only if the two heaps we are composing are disjoint.
The RA Heap corresponds exactly to the usual “heap with disjoint union”
PCM that forms the basis of the standard model of separation logic. In
Iris, we can obtain that same model of resources, but we obtain it by
composing smaller pieces.

From here, it is only a small step to a heap for fractional permissions:5

FHeap := Loc fin−⇀ Frac×Ag0(Val)

Considering again only the valid elements of this RA, for every location
we have a fraction and a value. When composing two heaps, Ag0 demands
that overlapping values must be equal, and Frac demands that the sum
of the fractions does not exceed 1. This matches exactly the usual PCM
used to model a heap with fractional permissions.

Obtaining these well-known notions of resources in a compositional way
is extremely useful when coming up with new kinds of resources needed
for some proof. We can just plug together the pieces and know that
all RA axioms are satisfied by construction. This also helps to identify
patterns: notice how we turned the exclusive heap into a fractional heap
by replacing Ex(X) by Frac × Ag0(X). This same pattern applies any
time we want to make an RA more fine-grained by introducing fractional
permissions.6

To our knowledge, this decomposition is a novel contribution of Iris.
The key idea is to permit elements without a unit, which prior work did
not consider: sometimes different elements could have different units,7
which somewhat corresponds to the core of a resource algebra, but that
core still had to be total. As we have seen, even when defining RAs like
Heap or FHeap that do have a unit, if we want to view those RAs as a
composition of smaller pieces we end up with RAs like Frac or Ex(X)
that can only be defined when units do not have to exist.8

4.2 State-transition systems

One common and intuitive way to describe the interaction of concurrent
systems is through state-transition systems (STSs). STSs consist of a set
of states and a (directed) transition relation between them, describing
how threads are allowed to move from state to state. On top of that, a
proper description of system behavior often requires some form of exclusive
tokens to introduce asymmetry: some transitions can only be taken by the

5 Boyland, “Checking interference
with fractional permissions”, 2003
[Boy03]; Bornat et al., “Permission
accounting in separation logic”,
2005 [Bor+05].

6 In fact, the example RA from
§3.1 was obtained via a similar
generalization from the RA used in
the previously published version of
that example: Ex(()) turned into
Frac. Note that Ag0(()) carries
neither knowledge nor ownership so
there is no point in adding it.

7 Dockins, Hobor, and Appel,
“A fresh look at separation alge-
bras and share accounting”, 2009
[DHA09].

8 It might be tempting to just add a
trivial unit to any RA to make it a
uRA (and indeed, that construction
is occasionally useful, see §4.4). But
this also implies that no element
can be exclusive, thus removing
the possibility of frame-preserving
updates such as those based on
frac-exclusive.

48

Part I: Iris Chapter 4: Ghost state constructions

thread owning the token. In Iris, we follow the style of STSs pioneered
by CaReSL9 where states are treated abstractly and paired with a state
interpretation function ϕ defining, for each state, the logical assertion
that has to hold in that state.

For example, the one-shot protocol from §3 could be described by the
STS and state interpretation given in Figure 4.1. Here, pending is the
initial state, and in that state the protocol owns x 7→ inl(0).10 shot(n)
represents a family of states, one for every choice of n ∈ Z, reflecting the
possible values of x after set was called. Finally, the STS comes with a
token [tok]. The fact that shot(n) contains that token (and pending does
not) means that a thread transitioning from pending to shot(n) needs to
relinquish ownership of said token: the law of token conservation says
that the tokens owned by the thread before the transition, plus the tokens
owned by the initial state, must be the same as the tokens owned by the
thread after the transition plus the tokens owned by the final state. So, if
the last state we saw is pending and we do not own any tokens, the STS
might have transitioned to shot(n) (for some n) in the meantime. But if
the last state we saw is pending and we do own the exclusive token [tok],
we know that the STS will still be in the same state, since nobody else
could have made that transition.

pending
shot(n)

[tok]

ϕ : x 7→ inl(0) ϕ : x 7→ inr(n)

Figure 4.1: STS for the one-
shot protocol.

The point of this section is to explain how STSs like the above can be
obtained in Iris as a combination of the right resource algebra and an
invariant. Given that STS-like mechanisms are the predominant protocol
abstractions in concurrent separation logics, a logic like Iris that claims
to subsume prior work has to provide support for this mechanism as
well. Being able to encode STSs in terms of simpler mechanisms is a key
innovation of Iris.

A general STS is defined by a set of states S, a transition relation→ ⊆
S×S, a set of tokens T , a labeling L : S → ℘(T) of protocol-owned tokens
for each state, and a state interpretation function ϕ : S → iProp.11 We
first define a resource algebra reflecting the abstract transition structure
and tokens of the STS. Then we use an Iris invariant to tie the abstract
STS to the state interpretation, similar to what we did in the example
in §3.

A resource algebra for STSs. Similar to STSs in CaReSL,12 we first lift
the transition relation to a relation on states and tokens owned by the
current thread (implementing the law of token conservation) and also
define a stepping relation for the frame of a given token set:

(s, T)→ (s′, T ′) := s→ s′ ∧ L(s)] T = L(s′)] T ′

s
T−→ s′ := ∃T1, T2. T1 #

(
L(s) ∪ T

)
∧ (s, T1)→ (s′, T2)

9 Turon et al., “Logical relations
for fine-grained concurrency”, 2013
[Tur+13]; Turon, Dreyer, and
Birkedal, “Unifying refinement and
Hoare-style reasoning in a logic for
higher-order concurrency”, 2013
[TDB13].

10 Protocols owning resources work
entirely analogously to invariants
owning resources, which we have
seen in §3.4. In fact, an invariant is
essentially a degenerate STS with
just one state.

11 We impose no restriction on the
transition relation; in particular,
cycles are allowed.

12 Turon, Dreyer, and Birkedal,
“Unifying refinement and Hoare-
style reasoning in a logic for higher-
order concurrency”, 2013 [TDB13].

49

Part I: Iris Chapter 4: Ghost state constructions

Intuitively, (s, T) → (s′, T ′) means that a thread owning tokens T can
transition from state s to state s′, and will then own tokens T ′. For
example, in our one-shot STS, we have (pending, {[tok]})→ (shot(n), ∅).
The frame-step relation s T−→ s′ says that if a thread owns tokens T , other
threads could step from s to s′. Here, X # Y expresses disjointness of the
two sets. In the one-shot STS, one crucial property is that pending {[tok]}−−−−→
shot(n) does not hold, reflecting that if we own the token, the frame
cannot step from pending to shot(n).

We further define closed sets of states (given a particular set of tokens)
as well as the closure of a set:

closed(S, T) := ∀s ∈ S.L(s) # T ∧
(
∀s′. s T−→ s′ ⇒ s′ ∈ S

)
↑(S, T) :=

{
s′ ∈ S

∣∣∣ ∃s ∈ S. s T−→
∗
s′
}

A set of states with some set of tokens is closed if the frame cannot make
any steps that leave the set. This means that all possible actions of other
threads have already been taken into account in that set.13 For example,
we have closed({shot(n)} , ∅) reflecting the fact that once we are in some
state shot(n), even if we do not own any tokens, we know we will stay
in that state forever. We also have closed({pending} , {[tok]}) because if
we do own the token and are in state pending, we will stay in that state
until we decide to use the token (the frame cannot step out of that state).
But we do not have closed({pending} , ∅) because the frame could own the
token and step from pending to shot(n).

It is easy to show that, if (S, T) is well-formed in the sense that T is
disjoint from the tokens of states in S, then ↑(S, T) is closed w.r.t. T .

The domain of the STS RA is now defined as follows:

M := auth(s : S, T : ℘(T) | L(s) # T)
| frag(S : ℘(S), T : ℘(T) | closed(S, T) ∧ S 6= ∅)
|

V(a) := a 6=

There are two kinds of elements in this resource algebra (next to the usual
“invalid” element):

• frag represents a partial view of the protocol: S is a set of states, and
owning frag(S, T) means that the current state of the protocol is some
state in that set; moreover, we own the tokens T . Which of those states
the protocol is in can change at any time, even without an action of
our own, because other threads may take steps in the protocol. This
set has to be closed to ensure that all possible such actions are taken
into account.

• auth is owned by the “authority” that knows exactly what the current
state of the protocol is. This element is exclusive, meaning only one
such element exists per instance of the RA. auth also carries a set of
tokens, which is only needed to properly define composition.

Based on this intuition, the following definitions for composition and core
of STSs should not be too surprising:14

13 For a set of states with some
tokens to be closed, we also require
that those tokens do not overlap
with any of the tokens owned by
any of the possible states. If we
own a token, we cannot be in any
of the states owning that token,
so this excludes some ill-formed
combinations of states and tokens.
Folding that requirement into closed
is mostly a technicality; it makes
defining the RA later easier.

14 As usual, the remaining cases are
all invalid ().

50

Part I: Iris Chapter 4: Ghost state constructions

frag(S1, T1) · frag(S2, T2) := frag(S1 ∩ S2, T1 ∪ T2)
if T1 # T2 and S1 ∩ S2 6= ∅

frag(S, T) · auth(s, T ′) := auth(s, T ′) · frag(S, T) := auth(s, T ∪ T ′)
if T # T ′ and s ∈ S

|frag(S, T)| := frag(↑(S, ∅), ∅)
|auth(s, T)| := frag(↑({s} , ∅), ∅)

The token sets are composed by disjoint union, reflecting their exclusivity.15
State sets are composed via intersection: if we know that we are in one of
the states of S1, and we know that we are in one of the states of S2, then
the combination of these pieces of knowledge is that we are in one of the
states in S1 ∩ S2. That intersection can never be empty because we are
always in some state. One key proof obligation here is to show that this
composition always yields sets of states and tokens that are closed, which
indeed turns out to be the case.

Composition of the authoritative element with a fragment works very
similarly. Two authoritative elements of course cannot be composed; this
is what ensures their exclusivity.

For the core, we “forget” all tokens and replace “authoritative” owner-
ship by the per-thread view. We then need to close our new set of states
under frame steps again to make sure we got a valid element of the RA.16

Based on this, we can show the following frame-preserving update:

sts-step
(s, T)→∗ (s′, T ′)

auth(s, T) auth(s′, T ′)

This update is quite remarkable! It shows that the structure of frame-
preserving updates on the STS RA mirrors the transition relation of the
STS. One the one hand, that is of course exactly the point. On the other
hand, this is in stark contrast to the other RAs we have considered so
far: there, we started by defining the “things one can know or own” (the
elements of the RA, such as pending(q) and shot(n)), next defined how
they compose, and finally proved which state transitions are possible. The
STS RA as a construction lets us go the other way: we start by defining
the states and their transitions, and then we can prove that a statement
like “we are in one of the states of S and own tokens T” (frag(S, T)) is
actually something that one can “know and own”, i.e., that the set of
states is closed under interference from other threads given the tokens we
have.

RAs as a model of both ownership and knowledge are versatile enough
to offer the user the choice whether they want to start by defining the
statements one can make in the logic (and derive the transitions), or start
by defining the transitions (and derive the statements).

Bringing in the state interpretation. Finally, we need to connect the
abstract state of the STS to the rest of the logic through the state
interpretation. This is where the “STS authority” comes into play. We

15 If the same token was owned
by two threads, that would make
the overall composition of all
resources , which is never the case.

16 Although innocent-looking, there
is something very curious about this
definition: it is the only example
we have of a core that is not a
homomorphism. The core of the
STS RA satisfies ra-core-mono
like all cores do, but it does not
satisfy the stronger, and perhaps
more natural, condition |a·b| = |a|·|b|.
See “The Iris 3.2 documentation”
[Iri19] for a counterexample, which
unfortunately is too large to fit in
this margin.

51

Part I: Iris Chapter 4: Ghost state constructions

define an invariant as follows:17

StsInvγ := ∃s. auth(s, ∅) γ ∗ ϕ(s)

In other words, we make sure that whatever the current state s of the
STS is, the corresponding state interpretation holds. Remember that
“holds” here is not just a factual statement; the state interpretation can
claim ownership of resources and those resources are then owned “by the
protocol” and available to threads that partake in the protocol.

It is instructive to compare the shape of StsInvγ , applied to the STS in
Figure 4.1, with the actual invariant we used for that example:

I := (x 7→ inl(0) ∗ pending(1/2) γ) ∨ (∃n. x 7→ inr(n) ∗ shot(n) γ)

Considering that a disjunction is the same as an existential quantification
over a Boolean, we can see that both have the exact same structure!
Intuitively, each of the two (families of) states in the STS corresponds to
one of the disjuncts in the invariant, and the existential quantification
over n represents the choice of n in the shot(n) states. Only the tokens
work out somewhat differently: the STS token [tok] corresponds to the
pending(1/2) γ that (under the disguise of the abstract T) occurs in the
precondition of set. The other half pending(1/2) γ basically plays the
role of the authoritative STS element, connecting the state in the invariant
with the token.

To make the proof rule for STS accesses easier to state, we also define
an assertion to express that we are at least in some state s of the STS,
owning some tokens T :

StsStγ(s, T) := frag(↑({s} , T), T) γ

Here we use the closure to turn “at least in state s” into the set of states
that we could be in, taking into account the tokens we own. This is where
we need to use the same γ as in StsInv to make sure that we are talking
about the same instance of the protocol.

Finally, we can derive the following proof rule—basically a variant of
hoare-inv-timeless for STSs:

hoare-sts-timeless
atomic(e) N ⊆ E timeless(ϕ)

∀s. s1
T−→ s⇒ {ϕ(s) ∗Q1} e {v. ∃s2, T2. (s, T1)→ (s2, T2) ∗ ϕ(s2) ∗Q2}E\N{

StsInvγ
N ∗ StsStγ(s1, T1) ∗Q1

}
e
{
v. ∃s2, T2. StsInvγ

N ∗ StsStγ(s2, T2) ∗Q2

}
E

This rule shares with hoare-inv-timeless the restriction that the
expression e needs to be physically atomic, and it also shares the admin-
istrative overhead: we need a mask (E) to make sure that the same STS
does not get accessed twice at the same time, and we require the state
interpretation to be timeless to avoid the later modality.

But let us focus on the meat of this proof rule. As usual with Hoare
triple rules, it is best read clockwise starting at the precondition of the
conclusion. We start by knowing that the STS invariant is maintained,

17 The γ here identifies the ghost
state instance used to run this
protocol; as we will see soon we
need it to be able to connect StsInv
with other statements about the
same protocol.

52

Part I: Iris Chapter 4: Ghost state constructions

having some view of the STS protocol telling us we are at least in state s1

and own tokens T1, and owning some additional resources described by Q1.
After applying the rule, we have to show a triple for every possible state
the STS might be in right now, which are all the states s that the frame
could have reached from s1, taking into account that we own tokens T1 (so
the frame does not have access to those tokens). We also obtain the state
interpretation ϕ(s) of that state s, which corresponds to how we would
usually obtain (temporary) ownership of an invariant I when opening it.
We get to verify e under full ownership of the resources governed by the
STS, but when e is done, we have to pick some state s2 and corresponding
token set T2 such that (a) the transition from s to s2 is permitted by the
STS and follows the law of token preservation, and (b) we can produce
(ownership of) the state interpretation of the new state. If there are any
leftover resources Q2, we are allowed to keep them. Finally, the rule says
that when e is done we can continue our verification knowing that the
STS is now at least in state s2. This is the moment where we “forget”
that the current state is exactly s2, because we have to take into account
that other threads might take transitions in the same protocol.

This corresponds exactly to the kind of rule that the built-in STSs
of CaReSL have—showing that Iris can encode the reasoning principles
provided by that logic.

4.3 One RA to rule them all

At this point, it should have become clear that in Iris there is a strong
emphasis on only providing a minimal core logic, and deriving as much
as possible within the logic rather than baking it in as a primitive. For
example, both Hoare triples and propositions of the form l 7→ v are
actually derived forms. This has the advantage that the model can be
kept simpler, since it only has to justify soundness of a minimal core logic,
the aforementioned Iris base logic.18

In this section we discuss the encoding of the proposition a
γ for ghost

ownership, which is not a built-in notion either. As we have seen, this
proposition allows one to have multiple ghost locations γ, all of which
can range over different RAs. As a primitive, Iris provides just a single
global ghost location whose structure is described by a single global RA
picked by the user. However, by picking an appropriate RA for that one
location, we can define the proposition a

γ in Iris and derive its rules as
given in Figure 3.5 (on page 35) within the logic.

Iris’s primitive construct for ghost ownership is Own (a), whose rules
are given in Figure 4.2. It is worth noting that the global RA must be
unital, which means it should have a unit element ε (Figure 3.4). The
reason for this is twofold. First of all, it allows us to have the rule own-
unit, which is used to prove ghost-alloc. Second of all, unital RAs
enjoy the properties that the extension order 4 is reflexive and that the
core | − | is total, which simplify the model construction. However, the
RAs used for the user-visible locations a

γ do not have to be unital; we
will define the global RA in a way that it has a unit even if the local RAs
do not.

18 Jung et al., “Iris from the ground
up: A modular foundation for
higher-order concurrent separation
logic”, 2018 [Jun+18b].

53

Part I: Iris Chapter 4: Ghost state constructions

own-op
Own (a · b)⇔ Own (a) ∗ Own (b)

own-unit
True⇒ Own (ε)

own-core
Own (|a|)⇔ �Own (|a|)

own-valid
Own (a)⇒ V(a)

own-update
a B

Own (a)V ∃b ∈ B.Own (b)

Figure 4.2: Primitive rules for
ghost state.

In order to define the a
γ connective, we need to instantiate the single

global ghost state RA with a heap of ghost cells. To this end, we assume
that we are given a family of local RAs (Mi)i∈I for some index set I,19
and then we define the RA M of the global ghost state to be the indexed
(dependent) product over “heaps of Mi” as follows:

M :=
∏
i∈I
N fin−⇀Mi

As shown in §4.1, RAs can be lifted pointwise through products and
finite maps, so M is in fact an RA. It is even a uRA, with the unit being
the product of all empty maps:20

ε := λj. ∅

Using M as the uRA to instantiate Iris with allows us to (a) use all
the Mi in our proofs, and (b) treat ghost state as a heap, where we
can allocate new instances of any of the Mi at any time. We define the
connective for ghost ownership of a single location as:

a : Mi
γ := Own

λj.
[γ← a] if i = j

∅ otherwise

In other words, a : Mi

γ asserts ownership of the singleton heap [γ 7→ a]
at position i in the product, and the empty heap for every other position
in the product. We typically leave the concrete Mi implicit and write
just a

γ . The rules for − − given in Figure 3.5 can now be derived from
those for Own (−) shown in Figure 4.2.

Obtaining modular proofs. Even with multiple RAs at our disposal, it
may still seem like we have a modularity problem: every proof is done
in an instantiation of Iris with some particular global RA M , which in
our case means some particular family of RAs (Mi)i∈I . As a result, if
two proofs make different choices about the RAs, they are carried out in
entirely different logics and hence cannot be composed.

To solve this problem, we generalize our proofs over the family of RAs
that Iris is instantiated with. All proofs are carried out in Iris instantiated
with some unknown (Mi)i∈I , showing something like “for all (Mi)i∈I , . . . ”.
If the proof needs a particular RA, it further assumes that there exists

19 In our Coq formalization, the
index set must be finite. This is
needed to avoid classical axioms.

20 We write n-ary products as func-
tions from the index to the value
at that position. This exploits the
correspondence with dependently
typed functions in type theory.

54

Part I: Iris Chapter 4: Ghost state constructions

some j such that Mj is the desired RA. Composing two proofs is thus
straightforward; the resulting proof works in any family of RAs that
contains all the particular RAs needed by either proof. Finally, if we want
to obtain a “closed form” of some particular proof in a concrete instance
of Iris, we simply construct a family of RAs that contains only those that
the proof needs.

Notice that the generalization over resource algebras happens at the
meta-level here, so the set of available resource algebras must be fixed
before the proof begins. If, for example, the type of the ghost state should
depend on some program value determined only at run-time, all possible
types would already have to be in (Mi)i∈I . We have not yet explored to
what extent our approach is compatible with this situation, as it does not
seem to arise in practice.

4.4 Authoritative ghost state

The most frequently used resource algebra construction in Iris is the
authoritative RA. It is useful whenever a library maintains some piece of
state in an Iris invariant, and wishes to reflect that state as ghost state
that can be owned, with a library-defined notion of how ownership can
be “separated”. In particular, the authoritative RA in Iris can be used to
implement the idea of “fictional separation”.21 This generalizes what we
did in §3, and can be seen as an alternative to STSs (§4.2).

As a motivating example, we will explain how a specific instance of the
authoritative RA can be used to define fractional ownership ` q7−→ v of a
heap location starting from just full ownership with the standard points-to
connective ` 7→ v (§4.4.1). This is an example of fictional separation:
`
q17−→ v ∗ ` q27−→ v provides the fiction that the underlying ` 7→ v has been

disjointly split into two pieces. In §4.4.2, we will generalize the underlying
RA construction to the general authoritative RA.

4.4.1 Derived fractional heap

Concretely, our goal in this subsection is to define a library that provides
the following specification for a fractional heap:22

fheap-sep
`
q1+q27−−−−→ v ⇐⇒ `

q17−→ v ∗ ` q27−→ v

fheap-agree
`
q17−→ v ∗ ` q27−→ w ⇒ v = w

fheap-valid
`
q7−→ v ⇒ q ≤ 1

fheap-alloc
{True} ref(v) {`. ` 17−→ v}

fheap-load
{` q7−→ v} ! ` {w. w = v ∗ ` q7−→ v}

fheap-store
{` 17−→ v} `← w {` 17−→ w}

Here, all q are implicitly (strictly) positive. This specification formalizes
the idea described in §2.3: ownership of ` q7−→ v can be split into arbitrarily
many pieces that still all “sum up” to 1 (fheap-sep). Ownership of
any fraction of a location is sufficient for loading from that location
(fheap-load), but full ownership of the location is required for a store
(fheap-store).

21 Dinsdale-Young, Gardner, and
Wheelhouse, “Abstraction and
refinement for local reasoning”, 2010
[DGW10].

22 Technically, the library also re-
quires a globally available invariant
and a ghost name to tie invariant
and ownership together. We omit
those details for now to keep the dis-
cussion focused on the authoritative
RA; at the end of the section we
will show the precise specification.

55

Part I: Iris Chapter 4: Ghost state constructions

Following the Iris approach, we do not want to bake this specification
into the basic axioms that are available for our language; instead, we will
show that the standard heap triples already presented in Figure 3.2 on
page 27 are sufficient to derive the fractional heap specification. Even
though the underlying heap has unsplittable locations, we can present
to the user the fiction of being able to split them. The plan, roughly, is
for the library to maintain ownership of the “real” point-to connective in
an invariant, and then use the authoritative RA to let clients own some
piece of the state tracked by that invariant.

A resource algebra for authorities. The key ingredient to this construction
is the following resource algebra for an authoritative heap, based on FHeap
as introduced in §4.1:

FHeap := Loc fin−⇀ Frac×Ag0(Val)
M := auth(a : FHeap, f : FHeap) | frag(f : FHeap) |

The RA comes with two kinds of resources:

• The fragments frag represent ownership of some part of the heap, i.e.,
ownership of some fraction of some location(s). As we will see, these
elements behave (in terms of their compositions and core) just like
elements of FHeap.

These resources will be used to give meaning to ` q7−→ v in the specifica-
tion above. In other words, these resources are used by the clients of
the library to represent ownership and knowledge of some part of the
library’s state.

• The authoritative resource auth represents ownership of the entire heap
at once.23 Crucially, as we will see, the authoritative heap is kept in
sync with the fragments that are handed out to clients. Only one
authoritative resource can exist; its ownership is exclusive.

In the fractional heap library, the authoritative element will be owned
by the library itself. An invariant will tie the heap in the authoritative
resource to the underlying “physical” heap (described by the rules in
Figure 3.2). This is basically the same underlying pattern as what we
already saw for connecting an STS with its state interpretation (§4.2).

Matching these intuitions, resource composition is defined as follows:

frag(f1) · frag(f2) := frag(f1 · f2)
frag(f1) · auth(a, f2) := auth(a, f1 · f2)
auth(a, f1) · frag(f2) := auth(a, f1 · f2)

Notice, in particular, that there is no way to compose two authoritative
resources auth! This reflects their exclusive nature, similar to Ex (§4.1) and
the auth of an STS. For frag, on the other hand, we use the composition
operation from FHeap. This definition also explains why auth carries both
an authoritative heap a and a fragment f : we have to somehow define
what happens when an auth is composed with a frag without losing track
of which fragment we own in addition to the authoritative part.

23 The authoritative resource also
contains a fragment f , for much the
same reason that the authoritative
part of an STS also contains a set
of tokens. We will get back to this
point shortly.

56

Part I: Iris Chapter 4: Ghost state constructions

The core strips away the exclusive authoritative parts and otherwise
uses the core of FHeap:

|frag(f)| := frag(|f |)
|auth(a, f)| := frag(|f |)

So far, the heap in the authoritative resources and the fragments are
entirely unconnected. Their relationship is established by the validity
predicate:

V(frag(f)) := V(f)
V(auth(a, f)) := V(a) ∧ f 4 a

In other words, the composition of an authoritative heap a and a fragment
f is only valid if f is included in a, written f 4 a.24 This key property
implies that, if we own frag(f), we can be sure that whatever the authori-
tative a is, it is an “extension” of f—since all resources combined must
still be valid, we have that f 4 a.25 In particular, if f says that some
location ` has value v, we know that a ascribes the same value to `:

f(`) = (_, ag0(v)) ∧ V(auth(a, f))⇒ a(`) = (_, ag0(v))
(fheap-auth-ag0)

To see why this is true, notice that the definition of V for auth provides
V(a) and f 4 a. Thus a = f · f ′. We distinguish two cases:

• ` /∈ dom(f ′): then a(`) = f(`) = (_, ag0(v)), and we are done.

• ` ∈ dom(f ′): then a(`) = f(`) · f ′(`) = (_, ag0(v)) · f ′(`). Since we
also know V(a(`)), we have V(f ′(`)) (ra-valid-op) and thus f ′(`) =
(_, ag0(v′)) for some v′ (ag0-uninj on page 44). In fact, by ag0-agree
we get that v′ = v, and thus a(`) = (_, ag0(v)), finishing the proof.

This lemma will be crucial when verifying the fheap rules, because it
lets us draw a connection between ownership of a fragment (which is pure
ghost state without any inherent “meaning”) and the current physical
state of the heap.

Invariants for fictional separation. With our RA in place, we can finally
define the key invariant of the fractional heap library:

to_fheap(h) := (λv. (1, ag0(v))) 〈$〉 h
FHeapInv := ∃h : Loc fin−⇀Val.

auth(to_fheap(h), ∅) γ ∗ ∗
[`← v]∈h

` 7→ v

Here, we use f 〈$〉 h as Haskell-style notation for “mapping f over h”,
i.e., for applying f pointwise in h. We have to do this to convert h from
Loc fin−⇀Val to FHeap.

The invariant maintains that there always exists an h that ties together
two resources:

• On the one hand, h matches the authoritative resource of ghost state γ.

24 FHeap is unital, so 4 is reflexive
on this RA.

25 Note the analogy with STSs,
where owning frag(S, T) means we
can be sure that whatever the true
(authoritative) current state of the
STS is, it is contained in the set
S. In fact, it could be possible to
define the STS RA on top of the
authoritative RA, but that is not
something we have explored.

57

Part I: Iris Chapter 4: Ghost state constructions

• On the other hand, every location in h is also physically owned by
this invariant, meaning that in the physical heap, location ` contains
value h(`).

This means that the authoritative resource of γ is always in sync with
the actual physical heap, in very much the same way that our one-shot
ghost location in §3 was kept in sync with the physical value of x . Together
with the fact that the fragments of an authoritative RA are kept in sync
with the authoritative resource, this means that we can use the fragments
to keep track of the physical state! This is best demonstrated by looking
at the proof of fheap-load.

But first, we need to define ` q7−→ v. Because we are implementing
fractional points-to as a library inside Iris, we have to give meaning to
the fractional points-to assertion in terms of lower-level Iris connectives.
As mentioned before, our library uses ownership of a fragment of an
authoritative RA to model fractional points-to:

`
q7−→ v := frag([`←(q, ag0(v))]) γ

Proof of fheap-load. Now we can show that with this definition, and
assuming FHeapInv is maintained as an invariant, we can derive fheap-
load. Being fully explicit about invariants and namespaces, we want to
show the following triple:

FHeapInv N `
{

frag([`←(q, ag0(v))]) γ
}

! `
{
w. w = v ∗ frag([`←(q, ag0(v))]) γ

}
N

To perform this proof, we start by using hoare-inv-timeless to open
the invariant and get access to FHeapInv. After using ghost-op to merge
the two parts of γ, our current resources at this point are:

auth(to_fheap(h), [`←(q, ag0(v))]) γ ∗ ∗
[`′← v′]∈h

`′ 7→ v′

Note how the fragment we obtained via our precondition moved into
the second component of auth. Now we use fheap-auth-ag0 to learn
that to_fheap(h)(`) = (_, ag0(v)). Some simple reasoning about the
mapping operation 〈$〉 and ag0 shows that this implies h(`) = v. (This is
where we exploit that the authoritative RA keeps the fragments and the
authoritative resource in sync.)

Next, we use what we learned about h to conclude that, thanks to the
second component of FHeapInv, we actually own ` 7→ v. (This is where
we exploit that FHeapInv keeps the authoritative resource and the heap
in sync.) In other words, thanks to the authoritative RA and the way
FHeapInv is set up, we were able to start with ownership of the ghost
resource frag([`←(q, ag0(v))]) γ that has no physical meaning attached
to it, and end up with actually owning the physical right to access `!

Now all we have to do us use hoare-load, proving that we may
actually execute ! ` and that this will return v. We finish the proof
by re-establishing FHeapInv (which is trivial because we did not change
anything).

58

Part I: Iris Chapter 4: Ghost state constructions

Proof of fheap-store. The proof of the store rule starts very similar to
fheap-load: we open the invariant, and use fheap-auth-ag0 to show
that we actually own location l. However, completing the store operation
will actually change the value stored in l, so we cannot just close the
invariant again!

After the store operation, we are left with the following resources:

auth(to_fheap(h), [`←(1, ag0(v))]) γ ∗ ` 7→ w ∗ ∗
[`′← v′]∈h\{`}

`′ 7→ v′

In other words, for locations in h \ {`}, the physical heap and h are still
in agreement, but ` points to w.

The goal is to close the invariant with the new heap h′ := h[`←w]. But
for this, we will need to update the ghost state with a frame-preserving
update. This makes a lot of sense: we altered the physical state, so of
course we have to alter the ghost state as well to keep the two in sync.
Concretely, we need the following update:

auth(to_fheap(h), [`←(1, ag0(v))]) auth(to_fheap(h′), [`←(1, ag0(w))])

Two things are changed at the same time by this update: the authoritative
heap changes to h′, and the value of the fragment changes from v to w.
This keeps the authoritative resource and the fragment in sync.

To see why this is valid, let us consider what possible frames c? are
compatible with auth(to_fheap(h), [`←(1, ag0(v))]). First of all, c? cannot
be an auth as composing two of those is never valid. Secondly, if c? is
frag(f) for some f , then ` /∈ dom(f) because otherwise, f(`) · (1, ag0(v))
is invalid—this is based on the fact that nothing is compatible with the
full fraction 1 (frac-exclusive). Thus, the frame cannot make any
statement about `, and we are free to change its value to w.26

After the frame-preserving update is done, we can establish FHeapInv
with our new heap h′. We keep frag([`←(1, ag0(w))]), which exactly
matches the postcondition of fheap-store, and so we are done.

The remaining properties of fractional heaps are easy to show:

• fheap-alloc follows via hoare-alloc, and then adding the freshly
allocated ` to the h in FHeapInv. Crucially, we know that ` /∈ h because
the invariant owns all locations in h, and we already own ` because we
just allocated it (this argument relies on heap-exclusive).

• fheap-valid is a direct consequence of ghost-valid and how validity
of Frac is defined. Note that with the original definition of Frac (the
one with frac(q) where q ≤ 1), this rule would be rather nonsensical:
to even state an assertion like ` q7−→ v would require proving that q ≤ 1!
This turns out to be very inconvenient to work with in practice, which
is why we settled for the alternative definition where the assertion can
be stated with any positive q, but can only hold when q ≤ 1.

• fheap-agree follows from ghost-valid and ag0-agree.

• fheap-sep follows from ghost-op.

26 Later in this section, we will see
how we can replace this ad-hoc
proof of a frame-preserving update
by the composition of some general
principles.

59

Part I: Iris Chapter 4: Ghost state constructions

Fully formal specification. The actual specification that we ended up
proving does not exactly match the one we gave at the beginning of this
subsection: if we want to be fully precise, we have to account for the
fact that ` q7−→ v needs to know about the ghost name γ that we used
throughout the proof, so we will write ` q7−→γ v instead. Moreover, to
prove the Hoare triples above we had to assume FHeapInvγ

N . Finally,
for completeness’ sake, we also state explicitly that ` q7−→γ v is timeless.

fheap-init’
TrueV ∃γ. FHeapInvγ

N
fheap-sep’
`
q1+q27−−−−→γ v ⇐⇒ `

q17−→γ v ∗ ` q27−→γ v

fheap-agree’
`
q17−→γ v ∗ ` q27−→γ w ⇒ v = w

fheap-valid’
`
q7−→γ v ⇒ q ≤ 1

fheap-timeless’
timeless(` q7−→γ v)

fheap-alloc’
FHeapInvγ

N ` {True} ref(v) {`. ` 17−→γ v}N

fheap-load’
FHeapInvγ

N ` {` q7−→γ v} ! ` {w. w = v ∗ ` q7−→γ v}N

fheap-store’
FHeapInvγ

N ` {` 17−→γ v} `← w {` 17−→γ w}N

When working in Coq, we can hide the dependency on γ through a
typeclass—akin to assuming on paper that γ is globally known. However,
the invariant FHeapInvγ

N has to be mentioned explicitly in Coq.27 On
paper, we also make that implicit, which is justified by the fact that (a)
the invariant can be trivially established (fheap-init’) and (b) invariants
are persistent and can thus be duplicated arbitrarily often. Together,
this means we can pretend to be working with the specification from the
beginning of this subsection.

4.4.2 General rules for authoritative ghost state

The RA we used in the previous subsection was an ad-hoc RA specifically
designed for fractional heaps. However, it turns out that this can be easily
generalized to an authoritative variant of any uRA M by defining an RA
combinator as follows:28

Auth(M) := auth(a : Ex(|M |)?, f : M)
auth(a1, f1) · auth(a2, f2) := auth(a1 · a2, f1 · f2)

V(auth(a, f)) :=

V(f) if a = ⊥
V(a) ∧ f 4 a otherwise

|auth(a, f)| := auth(⊥, |f |)

Auth(M) is basically the same RA as Ex(|M |)? ×M , with one exception:
validity of Auth(M) demands that the authoritative element (if present)
must include the fragment.29 As we have seen with fheap-auth-ag0,
this is the key property that binds the fragments and the authoritative
elements together.

This is conceptually very close to the previous definition in §4.4.1,
except that we reuse the exclusive RA Ex (§4.1) to model the exclusive
nature of authoritative elements, and instead of having two constructors
(auth and frag) we just have one, and make the presence of the authoritative
element optional. Up to these minor differences, we can recover the RA
of the fractional heap library via Auth(FHeap).

27 In fact, in Coq we build fractions
into the lowest-level points-to
assertion precisely to avoid this
extra invariant. The same pattern
still arises elsewhere though: for
example, the lifetime logic (§11)
relies on an invariant that we keep
implicit on paper but have to
mention in Coq.

28 Note that we do require M to
have a unit; if the RA we would like
to use is not unital, we can always
just add a unit element.

29 It seems plausible that this could
be defined using a generic “subset”
construction based on restricting
validity.

60

Part I: Iris Chapter 4: Ghost state constructions

As before, the intuition is that the authoritative element can only be
owned once because it is exclusive, while the fragments behave exactly
like elements of M . In fact, talking about these two kinds of elements is
so common that we define some syntactic sugar for them:30

•a := auth(ex(a), ε)
◦f := auth(⊥, f)

Notice how ◦f corresponds to frag(f) from §4.4.1: this is ownership of a
fragment without also owning the authoritative element. In defining •a,
we exploit the fact that M has a unit.

Local updates. To implement the fractional heap, we needed some frame-
preserving updates for the authoritative RA: we had to change the value
of a location in the authoritative heap (for fheap-store), or to add a
new location to the authoritative heap (for fheap-alloc). Like the other
RAs in §4.1, the authoritative RA comes with some frame-preserving
updates proven once and for all. However, for frame-preserving updates on
Auth(M), it turns out that which updates are possible heavily depends on
M . This should not be surprising—after all, M defines how the fragments
of Auth(M) can be (de)composed. The more surprising part is that, as
we will see, these updates can be very different from the frame-preserving
updates of M itself.

To state a general frame-preserving update for Auth(M), we introduce
the notion of a local update on M :

(a, f) L (a′, f ′) := ∀c? ∈M?. V(a) ∧ a = f · c? ⇒ V(a′) ∧ a′ = f ′ · c?

The way to think about this as follows: (a, f) L (a′, f ′) states that we
can do an update from authoritative state a to authoritative state a′ if
we also own the fragment f , which in this process is replaced by f ′. The
quantified c? in the update is the composition of all the other fragments
that we do not own; they have to stay the same.

This is basically exactly what a frame-preserving update for Auth(M)
needs, so it is not very hard to show the following rule:

auth-update
(a, f) L (a′, f ′)
•a · ◦f •a′ · ◦f ′

The actually interesting question, of course, is which local updates we
can show for the various RAs and RA combinators that we defined so far.

Local updates for maps and exclusive elements. Here are the local updates
we need for the fractional heap:

fmap-update-local
(a, b) L (a′, b′)

(f [i← a] , g[i← b]) L (f [i← a′] , g[i← b′])

exclusive-update-local
exclusive(f) V(a′)

(a, f) L (a′, a′)

fmap-alloc-local
i /∈ dom(f) V(a′)

(f, ∅) L (f [i← a′] , [i← a′])

30 For the rare case that we own
both an authoritative element and a
fragment, we just write •a · ◦f .

61

Part I: Iris Chapter 4: Ghost state constructions

fmap-update-local just says that finite maps propagate the local
updates pointwise, similar to fmap-update. exclusive-update-local
corresponds to exclusive-update, and together with the previous rule
this is what we need when verifying fheap-store: the fragment we own
at location ` (namely, (1, ag0(v))) is exclusive, and thus can be replaced
by anything we like.

fmap-alloc-local is what we need for fheap-alloc. It is basically
the local-update version of fmap-alloc, but there is one key difference:
fmap-alloc is a non-deterministic update where some fresh index i gets
picked for us, while fmap-alloc-local lets us pick i ourselves. This
extra power comes from the fact that fmap-alloc has to work with any
possible frame, and the fresh i is chosen such that the index has not been
used by anyone yet. In contrast, when using fmap-alloc-local we
know that f is the full map containing everything owned by anyone, and
thus any index i /∈ dom(f) is guaranteed to be unused. This freedom to
pick i ourselves was crucial for fheap-alloc, where a fresh ` was chosen
by the operational semantics, and now we have to allocate exactly that `
in our ghost heap to make sure they remain in sync.

Local updates for sums and products. For completeness’ sake, we give
the rules for local updates for the other RAs introduced in §4.1.

inl-update-local
(a1, f1) L (a′1, f ′1)

(inl(a1), inl(f1)) L (inl(a′1), inl(f ′1))

inr-update-local
(a2, f2) L (a′2, f ′2)

(inr(a2), inr(f2)) L (inr(a′2), inr(f ′2))

prod-update-local
(ai, fi) L (a′i, f ′i)

((a1, . . . , an), (f1, . . . , fn)) L ((a1, . . . , a
′
i, . . . , an), (f1, . . . , f

′
i , . . . , fn))

Cancellativity. The original Iris paper31 did not use the notion of local
updates; instead, we gave the following rule for frame-preserving updates
of the authoritative RA (or rather the authoritative monoid; resource
algebras were only introduced later):

auth-update-cancellative
cancellative(M) V(f ′ · c)
•(f · c) · ◦f •(f ′ · c) · ◦f ′

An RA M is cancellative if the following holds:

∀a, b, c. a · b = a · c⇒ b = c

This rule still holds (and can be expressed as a local update), but has
been superseded by monoid-specific rules for local updates like the ones
introduced above. One reason for this is that we sometimes work with
non-cancellative monoids (such as natural numbers with composition
taking the maximum of the two operands). Another reason is that auth-
update-cancellative is not very well-suited for use in a proof assistant:
we can only use it when our local resources are of the form •(f · c) · ◦f ,
and fitting resources into that shape can be non-trivial (e.g., during the
proof of fheap-store).

31 Jung et al., “Iris: Monoids and
invariants as an orthogonal basis
for concurrent reasoning”, 2015
[Jun+15].

62

Chapter 5

Invariants and modalities

In this chapter, we will take a closer look at invariants and masks. First
we will show the rules for general invariants without the restriction to
timeless propositions (§5.1). Then we will show how to encode a form of
invariants that comes with a cancellation mechanism, providing a way to
temporarily manage some resources in an invariant and re-claiming full
ownership later (§5.2). This will motivate an extension of the notion of
view shifts that we have seen so far to mask-changing view shifts (§5.3).
We will explain why it is useful to view view shifts as a modality instead
of a binary, implication-like connective (§5.4 and §5.5). We will also
briefly talk about a reoccurring pattern in Iris that arises frequently when
specifying libraries like cancellable invariants, dubbed accessors (§5.6).
Finally, we will collect in Figure 5.6 all the Iris proof rules that form the
foundation for the rest of this dissertation.

5.1 General invariants and the later modality

In §3.2, we used a restricted form of the invariant rules hoare-inv and
vs-inv that requires the invariant to be timeless. This rules out taking
some arbitrary proposition P and putting it inside an invariant, which is
sometimes needed. In that case, the stronger rules in Figure 5.1 can be
used.1

These rules use the later modality2 (.) to side-step the unsoundness
that would arise with entirely unrestricted impredicative invariants.3
After opening the invariant, instead of P we only obtain the weaker .P
(pronounced “later P”). The simpler rules we saw before can be derived
via vs-timeless, which lets us strip away a . in front of a timeless
proposition. The only other way to get rid of a later is to take a step in
the program, which is reflected by hoare-step: this variant of the frame
rule lets us remove a later from some framed proposition R if we are
framing around a computation that actually performs a step of execution,
i.e., if e is not a value.

Note that the extra . in inv-alloc actually makes the rule stronger
because, by .-intro, adding a later modality to a proposition is always
permitted.

1 Notably, P can really be any
proposition. CSL originally required
resource invariants to be precise
(i.e., in any given heap, there can be
only one sub-heap that satisfies the
invariant), but this was only needed
to justify the conjunction rule—and
in Iris, that rule is already broken
by frame-preserving updates. Also
see the discussion of cancellativity
in §7.2.

2 Appel et al., “A very modal model
of a modern, major, general type
system”, 2007 [App+07].

3 Jung et al., “Iris from the ground
up: A modular foundation for
higher-order concurrent separation
logic”, 2018 [Jun+18b], §8.2.

63

Part I: Iris Chapter 5: Invariants and modalities

inv-alloc
.P VE P

N

vs-inv
.P ∗Q1 VE\N .P ∗Q2 N ⊆ E

P
N ∗Q1 VE P

N ∗Q2

.-intro
P ` .P

.-mono
P ` Q

.P ` .Q

vs-timeless
timeless(P)
.P VE P

. commutes around �, ∨, ∧, ∗, ∀,
and ∃ with non-empty domain

hoare-inv
{.P ∗Q1} e {v. . P ∗Q2}E\N atomic(e) N ⊆ E{

P
N ∗Q1

}
e
{
v. P

N ∗Q2

}
E

hoare-step
{P} e {v. Q}E e is not a value

{P ∗ .R} e {v. Q ∗R}E

Figure 5.1: Rules for invari-
ants and the later modality.

5.2 Cancellable invariants

Iris invariants are persistent, which means that once established, they
are maintained forever. This can be very useful as we have seen in §3.
Sometimes, however, some resources have to be put under the control of a
shared invariant temporarily, and later, the protocol is “torn down” again.4
To this end, we can equip invariants with a fractional token (similar to
the fractional points-to assertion from §4.4) that is split among all parties
that wish to access the invariant: owning any fraction of the token is
sufficient to access the invariant, but canceling the invariant requires full
ownership of the entire token.

The logical interface of cancellable invariants is given in Figure 5.2.
cinv-alloc allocates a new cancellable invariant. Here, CInvγ,N (P)
expresses existence of a cancellable invariant for proposition P . Like
normal invariants, cancellable invariants are allocated into some namespace
N that is used to ensure that one invariant is not opened twice at the
same time. On top of that, they carry a ghost identifier γ which ties
the token and the invariant together: [CInv : γ]1 expresses full ownership
of the token for the cancellable invariant with identifier γ. That token
can be split according to cinv-split, with the fraction q tracking “how
much” of the total token is owned (similar to what we already saw with
pending(q) in §3 or ` q7−→ v in §4.4). cinv-valid says that it is impossible
to own more than the full fraction of the token.

As usual with these fractions, the absolute value of q does not really
matter (there is no discernible difference between owning a half or a
third of the full token), but what does matter is that all the pieces sum
up to exactly 1: only ownership of the full token is sufficient to apply
cinv-cancel, which cancels the invariant and re-gains full ownership
of P (well, .P).

Finally, vs-cinv and hoare-cinv can be used to access cancellable
invariants in very much the same way as vs-inv and hoare-cinv are used
for normal invariants. The key difference is that accessing a cancellable
invariant requires some fraction of the token for that invariant. This is

4 This situation arises frequently
when reasoning about programs
written in the style of structured
parallelism, i.e., with parallel
composition: in such a setting, it
makes sense for invariants to also be
structural so that when all threads
are joined together, resources
are all exclusively owned again.
Correspondingly, in logics like
FCSL [Nan+14] that are designed
for structural parallelism, the
built-in invariants are cancellable.
As usual, Iris provides a similar
mechanism as a derived form.

64

Part I: Iris Chapter 5: Invariants and modalities

cinv-timeless
timeless([CInv : γ]q)

cinv-persistent
persistent(CInvγ,N (P))

cinv-split
[CInv : γ]q1+q2

⇔ [CInv : γ]q1
∗ [CInv : γ]q2

cinv-valid
[CInv : γ]q ⇒ q ≤ 1

cinv-alloc
.P VE ∃γ. [CInv : γ]1 ∗ CInvγ,N (P)

cinv-cancel
N ⊆ E

CInvγ,N (P) ∗ [CInv : γ]1 VE .P

vs-cinv
.P ∗Q1 VE\N .P ∗Q2 N ⊆ E

CInvγ,N (P) ∗ [CInv : γ]q ∗Q1 VE CInvγ,N (P) ∗ [CInv : γ]q ∗Q2

hoare-cinv
{.P ∗Q1} e {.P ∗Q2}E\N atomic(e) N ⊆ E{

CInvγ,N (P) ∗ [CInv : γ]q ∗Q1

}
e
{

CInvγ,N (P) ∗ [CInv : γ]q ∗Q2

}
E

Figure 5.2: Rules for can-
cellable invariants.

necessary to make sure that the invariant cannot be accessed any more
after cinv-cancel was used.

Implementing cancellable invariants. Deriving these proof rules in Iris
is fairly straightforward. In terms of ghost state, we will use Frac to
represent the tokens. Then we define:

[CInv : γ]q := q : Frac γ CInvγ,N (P) := P ∨ 1 : Frac γ N

With this, cinv-split and cinv-valid are trivial. cinv-alloc is also easy,
using ghost-alloc and inv-alloc. For cinv-cancel, we use vs-inv
to open the invariant and perform a case distinction on the disjunction
.P ∨ . 1 : Frac γ .5 We cannot be in the second case, as we own the
full token ourselves and owning it twice leads to a contradiction.6 Thus
we have .P . We close the invariant again by depositing our 1 : Frac γ .
Finally, for vs-cinv and hoare-cinv, we use the corresponding rule
to open the underlying invariant and again exclude the second disjunct
similar to cinv-cancel, based on the fact that we own some fraction of
the token so it is impossible for the entire token to be inside the invariant.

A more complex variant of cancellable invariants will be the heart of how
we model Rust-style borrowing and lifetimes in §11. But for now, we
will focus on something else: one dissatisfying aspect of the specification
above is that we had to separately prove vs-cinv and hoare-cinv, and
we were doing basically the same reasoning both times. It would be much
more satisfying to be able to provide a single proof rule that can be used
both to open cancellable invariants around view shifts, and around Hoare
triples (and around anything else that might support opening invariants
around it, like logically atomic triples7). For this purpose, Iris provides
support for mask-changing view shifts.

5 Remember that . commutes with
disjunction.

6 1 : Frac γ is timeless, so we can
view-shift away the ..

7 Jung et al., “Iris: Monoids and
invariants as an orthogonal basis
for concurrent reasoning”, 2015
[Jun+15]; Jung et al., “The future
is ours: Prophecy variables in
separation logic”, 2020 [Jun+20c].

65

Part I: Iris Chapter 5: Invariants and modalities

5.3 Mask-changing view shifts

To explain mask-changing view shifts, let us recall the rule for opening
invariants around Hoare triples:

{.P ∗Q1} e {v. . P ∗Q2}E\N atomic(e) N ⊆ E{
P
N ∗Q1

}
e
{
v. P

N ∗Q2

}
E

The idea behind mask-changing view shifts is to view an application of
this rule as consisting of three separate steps:

1. Open the invariant, obtaining .P in the process.

2. Verify e (with a smaller mask).

3. Close the invariant, consuming .P in the process.

The second step can already be expressed as an assertion in Iris, which
can be found in the premises of the proof rule above:

{.P ∗Q1} e {v. . P ∗Q2}E\N

The purpose of mask-changing view shifts is to also be able to represent
the first and third step as their own assertions, instead of them happening
“implicitly” when the rule is used. The core idea is that they can be
viewed as a view-shift that changes the current mask. We will write
P VE1 E2 Q for a view shift with precondition P and postcondition Q

that requires the current mask to be E1 and changes it to E2. We interpret
the previously introduced non-mask-changing view shifts P VE Q as
sugar for P VE E Q.

With that, we can assign to each of the three steps a corresponding
Iris assertion:

1. Open the invariant, obtaining .P in the process: True VE E\N .P .

2. Verify e (with a smaller mask): {.P ∗Q1} e {v. . P ∗Q2}E\N .

3. Close the invariant, consuming .P in the process: .P VE\N E True.

The core proof rules for mask-changing view shifts and their interaction
with Hoare triples and invariants are given in Figure 5.3. The key rule here
is hoare-vs-atomic, which says that for physically atomic expressions,
we obtain a “rule of consequence” for mask-changing view shifts.8 The rule
essentially composes the opening view shift, Hoare triple and closing view
shift into a single Hoare triple—notice how at the composition points, the
masks are matching (the mask is E2 in both cases). Somewhat similarly,
vs-trans lets us compose two mask-changing view shifts if the final mask
of the first and the initial mask of the second view shift are the same.

With this, it seems like we can now state the rule for opening and
closing invariants without being concerned with what the invariant is
“opened around”:

inv-open-flawed
N ⊆ E

P
N
VE E\N .P

inv-close-flawed
N ⊆ E

P
N ∗ .P VE\N E True

8 The general rule of consequence
hoare-vs still works only for non-
mask-changing view shifts. In other
words, the key difference between
mask-changing and non-mask-
changing view shifts is that the
latter can only be eliminated in
pairs around an atomic expression.

66

Part I: Iris Chapter 5: Invariants and modalities

hoare-vs-atomic
P VE1 E2 P ′ {P ′} e {v. Q′}E2

∀v. Q′ VE2 E1 Q atomic(e)
{P} e1 {v. Q}E1

vs-refl
P VE E P

vs-trans
P VE1 E2 Q Q VE2 E3 R

P VE1 E3 R

vs-frame
P VE1 E2 Q

P ∗R VE1 E2 Q ∗R

Figure 5.3: Proof rules for
mask-changing view shifts.

However, it turns out that we are not quite there yet. In particular,
inv-close-flawed does not actually hold! To see this, remember that
inv-alloc lets us allocate an invariant in any namespace N of our choice:

P VE P
N

In particular, we could choose P := True, so in combination with inv-
close-flawed, we obtain True VE\N E True, which is quite a disaster:
this rule lets us “close” any namespace N without actually proving
anything.

What went wrong here? The problem is that by making inv-open-
flawed and inv-close-flawed separate rules, there is no longer any-
thing ensuring that the opening and closing of invariants “matches up”,
i.e., that we are closing the same invariant which we were opening before.
To fix this, we will instead have a single rule that combines both opening
and closing of an invariant—but still employ mask-changing view shifts
so that the same rule is good for opening invariants around Hoare triples
and view shifts alike.9

We could give such a rule using our existing notion of view shifts, but
it would be quite convoluted:10

N ⊆ E

P
N
VE E\N

(
.P ∗ ∃R. R ∗

(
R ∗ .P VE\N E True

))
Instead of this approach based on higher-order quantification, we will

observe that view shifts as we have seen them so far can be reduced
to a modality, expressing the “essence” of what a view shift does, in
combination with some other (more-or-less) standard Iris connectives.
This will let us simplify the above rule, avoiding quantification over R
(and indeed the same simplification is also possible for the §3 example).

But first, we perform the same reduction on Hoare triples.

5.4 Weakest preconditions and the persistence modality

Consider the precondition P of a Hoare triple {P} e {v. Q}E : all P
really does is describe the assumptions under which the remainder of the
statement has to hold. Basically, P has the same role as the context Γ
in the turnstile Γ ` Q of standard propositional or higher-order logic.
This makes sense in traditional Hoare logic where specifications (like
Hoare triples) are distinct from assertions (which work much like standard

9 In earlier versions of Iris, we man-
aged to avoid this issue (mostly by
accident) by associating invariants
not with a namespace but with a
single name that was existentially
quantified, so two different invari-
ants would never have the same
name. However, the bookkeeping
for all those unpredictable names
turned out to be quite tedious,
which is why we introduced names-
paces to get rid of the existential
quantifier in inv-alloc, replacing
it by a namespace that we can pick
ahead of time.

10 The R here ensures that the
closing part of this rule is used
only once, similar to the T in the
example spec in §3.

67

Part I: Iris Chapter 5: Invariants and modalities

logics), but in Iris, there is no such distinction. Iris already has a notion
of “logical context”, and we do not want to duplicate all that for Hoare
triple preconditions.

So instead, we define Hoare triples using more primitive Iris connectives:
weakest preconditions and the magic wand (written −∗, also sometimes
called “separating implication”). Weakest preconditions express that some
piece of code is safe to execute and achieves a given postcondition. The
magic wand is the natural separation-logic counterpart to implication,
it expresses that the weakest precondition is proven under some extra
assumptions:11

{P} e {v. Q}E := �
(
P −∗ wpE e {v. Q}

)
To ensure that Hoare triples are persistent, the entire definition is wrapped
in the persistence modality �; we will discuss this modality shortly.

By defining Hoare triples in terms of weakest preconditions like this,
some of the structural rules (such as the disjunction rule, the existential
rule, but also hoare-ctx) can be proven in terms of general properties of
the involved logical connectives. They do not need to be primitive rules
of the logic any more. We also gain the freedom to easily change this
definition; for example, “one-shot” Hoare triples can be obtained simply
by omitting the � modality.

It is crucial to understand that wpE e {v. Q} is not just a statement
about the possible executions of e. Just like all separation logic propo-
sitions, this proposition asserts ownership of some resources; and in the
case of the weakest-precondition proposition, the resources owned must be
sufficient to justify that e can be executed safely, after which resources de-
scribed by Q are owned. Using the weakest precondition to make progress
in a proof consumes these resources. For example, proving wpE ! ` {_}
will consume ownership of ` 7→ v, or require knowledge of some invari-
ant that governs `. Weakest preconditions “capture” resources from the
environment they are proven in.

The persistence modality. Back in §3.3, we introduced the notion of
persistent propositions and explained that some propositions, such as view
shifts, are always persistent. To obtain a persistent variant of any Iris
proposition, we can use the persistence modality: we have persistent(�P).
The key rules of the modality are shown in Figure 5.4. Intuitively, �P
(pronounced “persistently P”) expresses that we have a proof of P that
does not rely on any exclusive ownership, and thus can be freely duplicated.
This is not always possible, so for example � ` 7→ v leads to a contradiction.

In fact, the notion of a persistent proposition is defined in terms of this
modality:

persistent(P) := P ` �P

With this, �-idemp is exactly persistent(�P).
This modality is useful because, in general, a proposition like P −∗ Q

can only be used once because the proof of the magic wand could be
relying on exclusive ownership of resources that were present in the
context where the wand was proven.12 By wrapping a magic wand in

11 The magic wand has an entirely
undeserved reputation of being
complicated, but it really is no
more complicated than implication:
both work exactly the same, except
where implication interacts with
(standard) conjunction, magic
wand interacts with separating
conjunction.
So, where implication is uniquely

defined by the following bidirec-
tional rule:

Γ ∧ P ` Q

Γ ` P ⇒ Q

Magic wand is uniquely defined by:

Γ ∗ P ` Q

Γ ` P −∗ Q

During a separation logic proof,
magic wands can be applied to
the goal just like implications
are applied during a proof in
propositional logic.

12 This kind of “hiding” of re-
sources in a magic wand is exactly
analogous to the environment of
a closure implicitly—without it
being reflected in the type of the
closure—hiding the data that it
captures.

68

Part I: Iris Chapter 5: Invariants and modalities

�-elim
�P ` P

�-idemp
�P ` ��P

�-mono
P ` Q

�P ` �Q

�-and-sep
�P ∧Q a` �P ∗Q

�-wand-keep
(P −∗ �Q) ` (P −∗ �Q ∗ P)

� commutes around ∨, ∧, ∗, ∀, and ∃

Figure 5.4: Rules for the
persistence modalitythe persistence modality (like we did for Hoare triples above), we require

that only persistent resources be “captured” in the proof of the magic
wand. This is best seen by considering the following introduction rule
for �, which can be derived from �-mono and �-idemp:

�-intro
�P ` Q
�P ` �Q

The rule says that to prove proposition �Q, we have to remove everything
non-persistent from our context. Only then we can remove the modality
blocking our goal. In contrast, removing the modality from an assumption
is trivial (�-elim).
�-and-sep states that, since proofs of �P consume no resources, it

does not matter whether one uses conjunction or separating conjunction
when combining them with other propositions.13 We omitted from Fig-
ure 5.4 the rules showing that persistence commutes around most base
connectives (conjunction, separating conjunction, disjunction, universal
and existential quantification, even the later modality).

Last but certainly not least, �-wand-keep is a curious rule: it says
that when we have a magic wand whose conclusion is persistent, then if
we use up some resources P to apply that wand, we can actually keep
these resources. This might be surprising, why would we get P back even
though it is not persistent? The answer is that P −∗ �Q∧P can be easily
shown from P −∗ �Q with the normal rules for conjunction, and then
�-and-sep says this is equivalent to P −∗ �Q ∗ P . Intuitively, a magic
wand with a persistent right-hand side is unable to really “use up” any of
the exclusive resources of its left-hand side, so we can just keep them.

5.5 View shifts as a modality

After this brief interlude, we come back to the topic of view shifts.
So far, we have treated view shifts P VE1 E2 Q as a logical connective

stating the persistent fact that, if we own resources described by propo-
sition P and the current mask is E1, then we can perform an update to
the ghost state that changes the mask to E2, consumes P and provides
resources described by Q in return. This is somewhat similar to a Hoare
triple with precondition P and postcondition Q, except that there is no
code (and thus also no return value and no binder in the postcondition)
because only the ghost state is being affected.

13 Our usual style in Iris is to
use separating conjunction when
both conjunctions are equivalent.
This makes the use of normal
conjunction a clear signal that
we rely on its overlapping nature.
The only example of that in this
dissertation is in §12.4, in the
interpretation of the continuation
context of a λRust typing judgment.

69

Part I: Iris Chapter 5: Invariants and modalities

Just like Iris Hoare triples are defined in terms of the lower-level
notion of a weakest precondition (that does not have a built-in notion of
“assumption”), Iris view shifts are defined in terms of the (fancy) update
modality:14

P VE1 E2 Q := �
(
P −∗ |VE1 E2Q

)
The first thing to notice is the similarity with Hoare triples: the persistence
modality and the magic wand are used in exactly the same way, for the
same purpose.

The heart of this definition, however, is the modality |VE1 E2 : the
proposition |VE1 E2Q asserts ownership of resources that can be updated to
resources satisfying Q, while simultaneously changing the current mask
from E1 to E2. This process may access invariants whose namespace is
contained in E1. Similar to weakest preconditions, |VE1 E2Q can “capture”
arbitrary resources from the environment that it might need to perform
this update and eventually produce Q.

The key proof rules for the fancy update modality are given in Figure 5.5
(we use |VE as sugar for |VE E). From this, the view shift rules in Figure 5.3
and Figure 3.5 can be derived; in particular, vs-refl can be derived from
|V-intro-mask and |V-trans. We also obtain the “rules of consequence”
hoare-vs and hoare-vs-atomic from wp-fup and wp-fup-atomic,
respectively. Notice how these rules can now be stated without explicitly
naming all the intermediate propositions that “connect” the view shifts
and the Hoare triple.

One interesting aspect of the fancy update modality is that it forms a
monad: |V-trans in combination with |V-mono is sufficient to derive
“bind”, and with |V-intro-mask we can also derive “return”:

|V-bind
P ` |VE2 E3Q

|VE1 E2P ` |VE1 E3Q

|V-return
P ` |VE P

Correspondingly, a helpful intuition for fancy updates is that |VE1 E2P is
something like a “suspended ghost action” that, when executed, consumes
its implicitly “captured” resources and produces resources described by P .
The rule |V-frame says that, additionally, fancy updates are a strong
monad with respect to separating conjunction.

The bind rule also demonstrates how we usually eliminate the fancy
update modality: if the goal is itself below an update modality, we can
just remove it from the context15 if the masks match up (and doing so
can change our mask as well). The bind rule is basically dual in shape
to �-intro. Thus, another good name for |V-bind would have been
|V-elim.

5.6 Accessors

With the fancy update modality at our hands, we are finally ready to
state the rule for accessing invariants:

inv-acc
N ⊆ E

P
N ` |VE E\N (

.P ∗ (.P −∗ |VE\N ETrue)
)

14 One may wonder what is so
“fancy” about this modality. Well,
this fancy update modality is
defined in terms of some even
lower-level modality, and we had
to distinguish the two somehow—
and we ended up calling them
the “basic” and “fancy” update
modalities. This is not the most
aptly named Iris connective, but it
is also not the worst.

15 Using |V-frame, we can even
remove it from any of a bunch of
separately-conjuncted propositions
in the context.

70

Part I: Iris Chapter 5: Invariants and modalities

|V-mono
P ` Q

|VE1 E2P ` |VE1 E2Q

|V-intro-mask
E2 ⊆ E1

True ` |VE1 E2 |VE2 E1 True

|V-trans
|VE1 E2 |VE2 E3P ` |VE1 E3P

|V-frame
Q ∗ |VE1 E2P ` |VE1]Ef E2]Ef (Q ∗ P)

wp-fup
|VEwpE e {v. |VEQ} ` wpE e {v. Q}

wp-fup-atomic
atomic(e)

|VE1 E2 wpE2
e
{
v. |VE2 E1Q

}
` wpE1

e {v. Q}

Figure 5.5: Rules for the fancy
update modality.

To understand this rule, we break it into its constituent parts: assuming
that we know of some invariant in namespace N that maintains P , we
can obtain a mask-changing fancy update that removes N from the mask
and gives us two resources in return. The first is .P , the content of the
invariant. The second is a magic wand that, consuming .P , provides a
fancy update to change the mask back to what it was. We call this second
part the “closing” part, because “executing” that fancy update is when
the invariant gets closed again. This rule is, as it turns out, equivalent to
the one at the end of §5.3. The details of that argument are left as an
exercise to the reader.16

Together with wp-fup-atomic and |V-trans, we can derive both
hoare-inv and vs-inv from inv-acc. We now have a single proof rule
that says how invariants can be accessed, without regard for whether we
are accessing them from a Hoare triple or a view shift.

Following the same pattern, we can specify accessing cancellable invari-
ants as follows:
cinv-acc

N ⊆ E

CInvγ,N (P) ` [CInv : γ]q −∗ |V
E E\N (

.P ∗ (.P −∗ |VE\N E [CInv : γ]q)
)

Again this lets us open cancellable invariants both around Hoare triples
and around view shifts.

We can, in fact, also prove a slightly stronger rule that gives back the
[CInv : γ]q token immediately instead of waiting until the invariant has
been closed again:17

cinv-acc-strong
N ⊆ E

CInvγ,N (P) ` [CInv : γ]q −∗ |V
E E\N(

.P ∗ [CInv : γ]q ∗ (.P −∗ |VE\N ETrue)
)

Accessors. The three proof rules we have just described all follow the
same pattern:

R ` Q1 −∗ |VE1 E2
(
P1 ∗ (P2 −∗ |VE2 E1Q2)

)

16 Hint: think of closure conversion;
R is the “captured environment” of
the magic wand.

17 To be clear, this stronger rule
can also be expressed in the style of
vs-cinv and hoare-cinv. But we
felt the weaker rule is more intuitive
for the initial explanation.

71

Part I: Iris Chapter 5: Invariants and modalities

We call this an accessor, as its purpose is to encode some way to access
some resources. Here, R is some persistent proposition that is needed to
enable the desired rule (but, being persistent, it does not actually get
consumed by the rule); typically, R is knowledge of some kind of invariant.
Q1 gets consumed when the rule is applied. It is like a “precondition” to
the accessor. This is used by cancellable invariants to demand ownership
of (some fraction of) the invariant token. Next, the rule says that we
can execute a mask-changing fancy update from E1 to E2 in order to
obtain ownership of P1—in inv-acc, this is the content of the invariant;
in cinv-acc-strong the rule also gives back ownership of the invariant
token. On top of these resources, the rule also provides ownership of a
magic wand with precondition P2, forcing the client to reestablish the
invariant. After satisfying those preconditions, the client may execute
another mask-changing fancy update to switch the mask back to E1. In
so doing it obtains ownership of Q2, the “postcondition” of the accessor.

It helps to think of the library providing the accessor, and the client
using it, as being two parties that both follow a common protocol. So
after R establishes that the two parties are indeed bound by the rules of
the protocol, their interaction proceeds as follows:

1. The client has to give Q1 to the library.

2. The library changes the mask, and gives P1 to the client.

3. The client has to give P2 to the library.

4. The library changes the mask back, and gives Q2 to the client.

Accessors arise frequently when defining higher-order abstractions in
Iris that involve managing resources for the client. We have not proven
any proof rules about accessors in general; it does not seem like that
would actually be any simpler than working directly with the rules for
magic wand and the update modality. Instead, we treat accessors more
like a design pattern: a common and well-tried solution for a reoccurring
class of problems.

Accessors are quite syntactically heavy, involving two update modalities,
magic wands, and no less than five Iris propositions. Nevertheless, we hope
this section helps to demonstrate that there is a fairly simple underlying
intuition.

Accessor for STSs. Another example of an accessor arises from hoare-
sts-timeless (page 52). The following rule expresses that an STS can
be accessed around either a view shift or a Hoare triple (and it also lifts
the “timeless” restriction by adding . instead):

sts-acc
N ⊆ E

StsInvγ
N ` StsStγ(s1, T1) −∗ |VE E\N ∃s. s1

T−→ s ∗ .ϕ(s) ∗(
∀s2, T2. (s, T1)→ (s2, T2) ∗ .ϕ(s2) −∗ |VE\N E StsStγ(s2, T2)

)
This is quite a mouthful, but it still pattern-matches with the general
shape of an accessor, albeit now with some extra quantifiers:

R ` Q1 −∗ |VE1 E2 ∃x. P1 ∗ (∀y. P2 −∗ |VE2 E1Q2)

72

Part I: Iris Chapter 5: Invariants and modalities

Here, x is a binder for information that the client of the accessor learns
from the library when using the accessor (like the current state s of the
STS), and y is a binder for information that the client chooses when using
the accessor (like the new state s1 of the STS).

It remains an open problem to find a suitable syntax for accessors that
makes them less daring to look at in general, but there is a special case
that has a useful short-hand syntax.

Symmetric accessors. With inv-acc and cinv-acc, we have seen two
accessors that are symmetric in the sense that the resources which are
taken back in the “closing” phase of the accessor are the same as the ones
we started with, i.e., P2 = P1 and Q2 = Q1. This pattern turns out to
be common enough that it is worth introducing some syntactic sugar to
avoid having to repeat P and Q:

Q ∝E1 E2 P := Q −∗ |VE1 E2
(
P ∗ (P −∗ |VE2 E1Q)

)
With this, we can state the two aforementioned rules concisely as:

inv-acc
N ⊆ E

P
N ` True ∝E E\N .P

cinv-acc
N ⊆ E

CInvγ,N (P) ` [CInv : γ]q ∝E E\N .P

Prior work. The specification pattern we dubbed “accessors” is closely
related to some existing ideas described in the literature.

The most directly related prior work is the idea of a “ramification”.18
Ramifications have the shape R ` P ∗(Q −∗ R′); the similarity to accessors
should be quite obvious. Ramifications were proposed as a way to specify
operations that let a program access some part of a large data structure,
mutate that part, and then see those changes reflected in the data structure
as a whole. For example, ramifications might be used to specify a function
that returns a pointer to one particular node in a tree or graph. The
accessors we saw above do basically the same, except that there is no
physical operation being performed; the “data structure” is entirely ghost
state (and there are update modalities inserted in strategic places to
reflect those ghost state changes).

A slight variant of this pattern also arises in the work on Mezzo19
when specifying a find operation for lists (again, a way to access one
mutable element of a container): the postcondition of find says it returns
a “focused” element, which in particular involves a “wand” (encoded as a
function) to convert ownership of the element back to ownership of the
entire list. This exactly corresponds to the wand in a ramification or the
“closing” part of an accessor. In fact, even the original work on “Adoption
and Focus”20 already contains some indication of this pattern.

Incidentally, the authors of Mezzo also call this pattern “borrowing”,
which immediately raises the question of there being any relation to the
kind of borrowing that Rust offers (see §8.2). And indeed, the Rust
verification tool Prusti21 models some forms of borrowing with exactly
the same pattern. Namely, this applies to functions with a type like

18 Hobor and Villard, “The ramifica-
tions of sharing in data structures”,
2013 [HV13].

19 Balabonski, Pottier, and
Protzenko, “The design and for-
malization of Mezzo, a permission-
based programming language”, 2016
[BPP16], §2.4.

20 Fähndrich and DeLine, “Adoption
and focus: Practical linear types
for imperative programming”, 2002
[FD02].

21 Astrauskas et al., “Leveraging
Rust types for modular specification
and verification”, 2019 [Ast+19].

73

Part I: Iris Chapter 5: Invariants and modalities

fn(&mut T) -> &mut U, which basically means that the function takes a
reference to some large data structure and returns a reference to a part
of it—so, this is again the same kind of situation as ramifications and
Mezzo’s “focused” elements.

5.7 Summary: Iris proof rules

To summarize the Iris features that we have introduced so far, we collect
all the basic language-independent proof rules for weakest preconditions,
fancy updates, invariants, ghost state, later, and the persistence modality
in Figure 5.6. Some rules look slightly different than before: wp-frame,
wp-value and wp-bind are the weakest precondition versions of hoare-
frame, hoare-value and hoare-bind, respectively. Similarly, |V-
timeless is the modality variant of vs-timeless, and ghost-alloc as
well as ghost-update have been adapted as well. Finally, wp-step is
a version of hoare-step that also supports eliminating mask-changing
fancy updates together with the . modality when taking a step. (Note
how similar it is to wp-frame, except for the extra modalities.)

These are not the most primitive proof rules of Iris; most of them are
in fact derived from the lower-level Iris base logic.22 Instead, these rules
form the foundation of “high-level” Iris. Understanding their encoding in
terms of lower-level primitives (of which we have seen a glimpse in §4.3)
is not usually necessary when working with Iris, and will not be necessary
for the purpose of this dissertation.

22 Jung et al., “Iris from the ground
up: A modular foundation for
higher-order concurrent separation
logic”, 2018 [Jun+18b].

74

Part I: Iris Chapter 5: Invariants and modalities

Weakest preconditions.

wp-frame
Q ∗ wpE e {v. P} ` wpE e {v. Q ∗ P}

wp-value
P [v/w] a` wpE v {w. P}

wp-bind
wpE e {v.wpE K[v] {w. P}} a` wpE K[e] {w. P}

Fancy updates.

|V-mono
P ` Q

|VE1 E2P ` |VE1 E2Q

|V-intro-mask
E2 ⊆ E1

True ` |VE1 E2 |VE2 E1 True

|V-elim
P ` |VE2 E3Q

|VE1 E2P ` |VE1 E3Q

|V-trans
|VE1 E2 |VE2 E3P ` |VE1 E3P

|V-frame
Q ∗ |VE1 E2P ` |VE1]Ef E2]Ef (Q ∗ P)

wp-|V
|VEwpE e {v. |VEQ} ` wpE e {v. Q}

wp-|V-atomic
atomic(e)

|VE1 E2 wpE2
e
{
v. |VE2 E1Q

}
` wpE1

e {v. Q}

Ghost state.
ghost-alloc
V(a)

|VE ∃γ. a
γ

ghost-op
a · b γ ⇔ a

γ ∗ b γ
ghost-valid
a
γ ⇒ V(a)

ghost-update
a B

a
γ −∗ |VE ∃b ∈ B. b

γ

Persistence modality.

�-elim
�P ` P

�-intro
�P ` Q
�P ` �Q

�-mono
P ` Q

�P ` �Q

�-and-sep
�P ∧Q a` �P ∗Q

�-wand-keep
(P −∗ �Q) ` (P −∗ �Q ∗ P)

� commutes around ∨, ∧, ∗, ∀, and ∃.

Timeless propositions and the later modality.

.-intro
P ` .P

.-mono
P ` Q

.P ` .Q
. commutes around �, ∨, ∧, ∗, ∀,
and ∃ with non-empty domain

wp-step
e is not a value E2 ⊆ E1

|VE1 E2 . |VE2 E1Q ∗ wpE2
e {x. P} ` wpE1

e {x. Q ∗ P}

|V-timeless
timeless(P)
.P −∗ |VE P

timeless-ghost
timeless(a γ)

timeless propagates structurally through
∨, ∧, ∗, ∀, ∃.

Invariants.

inv-alloc
.P VE P

N

inv-acc
N ⊆ E

P
N ` |VE E\N (

.P ∗ (.P −∗ |VE\N ETrue)
)

Figure 5.6: Language-
independent Iris proof rules.

75

Chapter 6

Paradoxes

In this chapter, we describe two logical paradoxes that help motivate
two Iris design choices. The first paradox demonstrates why we have a .
modality, by showing that outright removing it from some key proof rules
leads to a logical contradiction. The second paradox explains why Iris is
an affine logic, i.e., why Iris comes with the weakening rule (P ∗Q⇒ P).
Usually, the absence of this rule enables a separation logic to ensure that a
program has no memory leaks. We show that in a logic with impredicative
invariants such as Iris, this is not the case—even without weakening,
memory leaks are still possible.

6.1 Naive higher-order ghost state paradox

As we have seen, the setup of Iris is such that the user provides a resource
algebra M by which the logic is parameterized. This gives a lot of
flexibility, as the user is free to decide what kind of ghost state to use.
We now discuss whether we could stretch this flexibility even further,
by allowing the construction of the resource algebra M to depend on
the type of Iris propositions iProp. We dubbed this phenomenon higher-
order ghost state1 and showed that it has useful applications in program
verification. In follow-on work,2 we then showed that higher-order ghost
state has applications beyond program verification: it can be used to
encode invariants in terms of plain ghost state, removing them from the
core logic.

The way we model higher-order ghost state puts certain restrictions
on the way iProp can be used in the construction of the user-supplied
resource algebra. Originally,3 these restrictions appeared as a semantic
artifact of modeling the logic. However, in this section we show that
restrictions of some kind are in fact necessary: allowing higher-order
ghost state in a naive or unrestricted manner leads to a paradox (i.e.,
an unsound logic). In order to demonstrate this paradox, we use the
simplest instance of higher-order ghost state, saved propositions (also
called “stored” or “named” propositions).4

In order to explain saved propositions, let us have another look at the
agreement resource algebra Ag0(X). As part of the decomposition of the
oneshot RA into small, reusable pieces, we also generalized the set of
values that the proof can pick from (i.e., the parameter of Ag0) from Z
to any given set X. Instead of choosing X to be a “simple” set like Z or
℘(N), we could try choosing it to be iProp, the type of Iris propositions

1 Jung et al., “Higher-order ghost
state”, 2016 [Jun+16].

2 Krebbers et al., “The essence of
higher-order concurrent separation
logic”, 2017 [Kre+17].

3 Jung et al., “Higher-order ghost
state”, 2016 [Jun+16].

4 Dodds et al., “Verifying custom
synchronization constructs using
higher-order separation logic”, 2016
[Dod+16].

77

Part I: Iris Chapter 6: Paradoxes

itself. This is an example of higher-order ghost state.5 The RA Ag0(iProp)
would then allow us to associate a ghost location (or “name”) γ with a
proposition P . However, this ability to “name” propositions leads to a
paradox.

Theorem 1 (Higher-order ghost state paradox). Assume we can instan-
tiate the construction from §4.3 with Ag0(iProp) being in the family of
RAs. Then we have:6

TrueV False

Before proving this paradox, let us take a look at the proof rules of Iris
that are crucial for the proof:

TrueV ∃γ. ag0(A(γ)) γ (sprop0-alloc)

ag0(P1) γ ∗ ag0(P2) γ ⇒ P1 = P2 (sprop0-agree)

The rule sprop0-agree, which states that saved propositions with
the same name are the same, follows easily from ag0-agree. The rule
sprop0-alloc, which allows one to allocate a name for a proposition,
looks a lot like an instance of ghost-alloc, except that the initial state
of the new ghost location may depend on the fresh γ. Said dependency
is expressed through A, a function mapping ghost names to iProp. In
fact, the rule sprop0-alloc follows from the following generalized rule
for ghost state allocation:

∀γ. V(g(γ))
TrueV ∃γ. g(γ) γ (ghost-alloc-dep)

This rule allows the initial state of the freshly allocated ghost location
(described by the function g) to depend on the location γ that has been
picked. The rule ghost-alloc-dep can be proven from the basic rules
for the Own (−) connective as shown in Figure 4.2 and fmap-alloc-dep
(page 47). This completes the proof of sprop0-alloc.

We now turn to the proof of Theorem 1. First, we define

A(γ) := ∃P. �(P ⇒ False) ∗ ag0(P) γ

Q(γ) := ag0(A(γ)) γ

Intuitively, A(γ) asserts that ghost location γ names some proposition
P that does not hold. (Since our ghost locations are described by the
RA Ag0(iProp), we know that everybody agrees on which proposition
is named by a ghost location γ, so it makes sense to talk about “the
proposition with name γ”.)

The proposition Q(γ) says that the proposition with name γ is A(γ).
After unfolding the definition of A, we can see that Q(γ) means the
following: “the proposition with name γ says that the proposition with
name γ does not hold”. In other words, Q(γ) means that the proposition
with name γ states its own opposite (P ⇔ ¬P). This is an instance of
the classic “liar’s paradox”, so it should not be surprising that it leads to
a contradiction. Concretely, we show the following lemma, from which
Theorem 1 is a trivial consequence.

5 The set iProp of Iris propositions
actually depends on which RA the
user picks, so we cannot refer to
iProp when picking the RA. The
point of this paradox is to show
what would go wrong if we could.

6 Masks do not matter in this
section, hence we will omit them.

78

Part I: Iris Chapter 6: Paradoxes

Lemma 1. We have the following properties:

1. Q(γ)⇒ �(A(γ)⇒ False),

2. Q(γ)⇒ A(γ), and,

3. TrueV ∃γ. Q(γ).

Proof. Notice that all propositions we are using for this paradox, except
the existentially quantified P in the definition of A(γ), are persistent, so
we can mostly ignore the substructural aspects of Iris in this proof.

For 1, we can assume Q(γ) and A(γ) and we have to show False. After
unfolding both of them, we obtain some P such that:

ag0(A(γ)) γ ∗�(P ⇒ False) ∗ ag0(P) γ

From sprop0-agree, we can now obtain that A(γ) = P . Since we
have a proof of A(γ), and we have �(P ⇒ False), this yields the desired
contradiction.

For 2, we can assume Q(γ). Our goal is A(γ), so we start by picking
P := A(γ). We now have to show �(A(γ)⇒ False), which easily follows
from (1) and our Q(γ). We further have to show ag0(A(γ)) γ , which is
exactly Q(γ). Hence we are done.

Finally, for 3, we use sprop0-alloc.

So, what went wrong here? Where does this contradiction originate
from? The problem is that higher-order ghost state, and saved propositions
in particular, allow us to express concepts like “the proposition with name
γ”. This allows us to define a proposition as being its own negation.
Usually, such nonsense is prevented because the definition of a proposition
cannot refer back to this proposition in a cyclic way. The fact that higher-
order ghost state lets us give names to propositions lets us circumvent
this restriction and close the cycle. In some sense, this is very similar to
Landin’s knot, where a recursive function is defined by indirectly setting
up recursive references of the function to itself through a location (“name”)
on the (higher-order) heap.

This is the simplest later-related paradox in Iris, but not the only
one: removing the . from the rules for invariants (inv-alloc, vs-inv,
hoare-inv) also leads to a contradiction.7 This shows that higher-order
ghost state is not the only feature that needs some mechanism to avoid
these paradoxes: even “just” having impredicative invariants (which can
be modeled without general higher-order ghost state8) is unsound when
the . is removed without replacement.

Saved propositions, soundly. The paradox shows that one has to be very
careful if one wishes to support higher-order ghost state. In particular, one
cannot allow resource algebras like Ag0(iProp) to be used to instantiate
the Iris logic. In Jung et al.,9 we show that higher-order ghost state is
sound if the recursive occurrences of iProp are suitably guarded.

To model saved propositions, we then use Ag(IiProp). Here, Ag is
a refined definition of the agreement RA Ag0 that supports recursive
definitions,10 and the “later” type constructor I (whose value constructor

7 Jung et al., “Iris from the ground
up: A modular foundation for
higher-order concurrent separation
logic”, 2018 [Jun+18b], §8.2.

8 Jung et al., “Iris: Monoids and
invariants as an orthogonal basis
for concurrent reasoning”, 2015
[Jun+15].

9 Jung et al., “Iris from the ground
up: A modular foundation for
higher-order concurrent separation
logic”, 2018 [Jun+18b].

10 The uses of Ag0 and ag0 in §4
can all be replaced by Ag and ag
since we maintain the key properties
ag0-agree, ag0-inj, and ag0-uninj,
as well as a · a = a.

79

Part I: Iris Chapter 6: Paradoxes

is next) plays the role of a guard. Based on that, we can define saved
propositions as follows:

γ ⇒ P := ag(next(P)) γ

The following proof rules hold:11

TrueV ∃γ. γ ⇒ P (sprop-alloc)
γ ⇒ P1 ∗ γ ⇒ P2 ⇒ .(P1 = P2) (sprop-agree)

In particular, note how sprop-agree is weaker than sprop0-agree: this
rule gives us the same equality, but only one step of execution “later”,
which prevents the paradox. Moreover, neither γ ⇒ P nor equality of
propositions are timeless, so we cannot use vs-timeless to work around
this extra .. If we tried to re-prove Theorem 1, we would end up defining
an assertion that is equivalent to its later negation (i.e., P ⇔ ¬ .P), and
there is nothing contradictory about that.

This sound form of higher-order ghost state is also used to define Iris
invariants in terms of ghost state, but the details of that encoding are
beyond the scope of this dissertation.12

6.2 Linear impredicative invariants paradox

One common question about Iris is why Iris is an affine (or intuitionistic)
separation logic. Why does P ∗Q⇒ P (the weakening rule) hold? Initially,
this was mostly a choice of convenience: having weakening available meant
we did not have to worry about “cleaning up” (we could just throw away
any leftover resources). The typical motivation for using a separation
logic without weakening (a linear or classical separation logic) is to verify
the absence of memory leaks, but the tricky concurrent algorithms we
were verifying anyway assumed a garbage collector—so memory leaks
were not a concern. As Iris got applied to a broader set of problems, the
first linear variants of Iris were proposed.13 However, it turned out that
suitably generalizing the axioms of Iris to fit the linear setting is far from
trivial.14

But this is not the only reason that Iris for now remains an affine logic:
it also turns out that in a program logic with impredicative invariants
like Iris, linearity is basically useless! Even if Iris was linear, it could not
be used to verify the absence of memory leaks. That is demonstrated by
the paradox we describe in this section.

In a linear separation logic, the proposition Emp expresses that we do
not own any resources. This is useful because it means that when a Hoare
triple has post-condition Emp, there cannot be any memory leaks: if any
memory was still allocated, ownership of that memory would have to be
accounted for in the post-condition. The problem is that when mixing
linearity and impredicative invariants, this is not true any more. We will
demonstrate this by deriving P V> Emp, letting us “throw away” any
resource, which should never be possible in a linear separation logic. In
particular, a trivial consequence is that we obtain {Emp} ref(0) {Emp},
“proving” that this clearly leaky program has no memory leak.

11 A dependent version of sprop-
alloc is possible, but will not be
necessary for the purpose of this
dissertation.

12 Krebbers et al., “The essence of
higher-order concurrent separation
logic”, 2017 [Kre+17].

13 Tassarotti, Jung, and Harper, “A
higher-order logic for concurrent
termination-preserving refinement”,
2017 [TJH17].

14 Krebbers et al., “MoSeL: A
general, extensible modal framework
for interactive proofs in separation
logic”, 2018 [Kre+18].

80

Part I: Iris Chapter 6: Paradoxes

Impredicative invariants break linearity. Before we can get into the
details, we have to determine a suitable notion of invariants for a linear
logic. The invariants of Iris as presented in §3 are clearly not a good fit,
as they let us put any proposition into an invariant and then entirely lose
track of the invariant’s existence: P

N can be arbitrarily duplicated and
discarded. Instead, we will use the cancellable invariants introduced in
§5.2. In particular, we will treat the invariant token [CInv : γ]q as linear,
meaning [CInv : γ]q 0 Emp. This means that invariant tokens cannot be
“thrown away”. Intuitively, to prove a Hoare triple with post-condition
Emp, we have to cancel all invariants and then appropriately dispose of
all the resources stored in these invariants, as that is the only way to get
rid of the token—except that this intuition does not actually work out,
as we will see.

Theorem 2 (Linear impredicative invariants paradox). Assume a linear
separation logic (i.e., a separation logic without the weakening rule P ∗Q⇒
P) with impredicative cancellable invariants (specifically, cinv-alloc
and cinv-acc-strong with Emp replacing True).

Then we can prove:
P V> Emp

This paradox is not a logical contradiction in the sense of deriving a
proof of False, but it does break the important meta-theoretic property of
the logic that is used to verify the absence of memory leaks.

The proof of this paradox is not very complicated. Essentially, we can
put the token for the invariant into the invariant itself. Thus we can have
a postcondition of Emp, but still have an invariant that owns and hides
arbitrary resources. The key result is the following lemma, from which
Theorem 2 is a trivial consequence via cinv-alloc:

Lemma 2. We can show the following:

CInvγ,N (True) ∗ [CInv : γ]1 V> Emp

Proof. We use cinv-acc-strong, which we can do because we own
[CInv : γ]1. That means the invariant gets opened, and we have to prove:

[CInv : γ]1 ∗ .True ∗
(

(.True) −∗ |V>\N >Emp
)
−∗

|V>\N >Emp

This means our current resources are the token [CInv : γ]1 and the content
of the invariant .True, together with the closing part of the accessor. We
could use that closing view shift to close the invariant again using our
.True (putting the same resources back into the invariant that we just
got out), but then we would be left with [CInv : γ]1. So instead, we will
use both .True and [CInv : γ]1 to satisfy the premise of the closing view
shift, effectively adding [CInv : γ]1 to the resources held by the invariant.

To this end, we simply apply the closing view shift (its conclusion
matches our goal), which changes the goal to:

[CInv : γ]1 ∗ .True −∗ .True

By .-intro, this holds trivially (because Q −∗ True for any Q).

81

Part I: Iris Chapter 6: Paradoxes

Iris itself, being an affine logic, is not directly affected by this theo-
rem. But other logics are: one example of a linear separation logic with
impredicative invariants is the logic of the VST framework.15 In VST,
invariants are available in the form of “resource invariants” that are asso-
ciated with locks. Opening and closing the invariant in Iris corresponds
to acquiring and releasing the lock. So, unlike in Iris, invariants are
directly tied to some part of the physical state. Still, Theorem 2 can
probably be translated to VST. There is no rule directly corresponding to
cinv-acc-strong, but Hobor’s PhD thesis16 describes a strong variant
of the proof rule for releasing a lock that can be used to let one thread
send all its resources to another thread, including the resources needed
to access the lock itself. In personal conversation,17 we got confirmation
that this is likely sufficient to “leak” resources in VST, in the same vein
as Theorem 2. And indeed, VST does not have a theorem stating that
memory-leak freedom can be established by showing a Hoare triple with
postcondition Emp.

One natural question in this context is whether there is some way to
weaken impredicative invariants such that they do not subvert linearity.
This question is answered positively by Iron,18 a linear logic defined on
top of Iris. Iron has impredicative invariants, but they come with an
extra side-condition: the invariant needs to be “uniform”, i.e., not every
possible assertion may be used as an invariant. And, in particular, the
token required to deallocate an invariant is not uniform and as such may
not be put into an invariant. Indeed, if the uniformity condition were to
be removed from Iron, the logic would fully satisfy the assumptions of
Theorem 2. The theorem thus demonstrates that the side-condition is, in
some sense, necessary.

A note on terminology. Above, we use the terms affine and linear
separation logics to distinguish logics that do enjoy weakening and those
that do not. The standard term for this distinction is “intuitionistic” vs.
“classical” logic, but as others argued before,19 that terminology is mostly
based on a coincidence: for the kind of simple separation logic models
that were used when the terminology was coined, it is indeed the case
that the logic could have either weakening or excluded middle, but you
could not usefully have both in the same logic.20 Thus, the absence of
the law of excluded middle (indicating an intuitionistic logic) was used
to indicate the presence of the weakening rule. However, in logics such
as VST and Iris, the excluded middle does not hold for reasons entirely
unrelated to weakening: both of these logics are intuitionistic because they
use step-indexing in their model. And yet, Iris has weakening and VST
does not—clearly, the terminology does not work any more for today’s
logics.

Cao et al. propose to call logics with weakening “garbage-collected”,
while logics without weakening are called “malloc/free”. This draws a
parallel between programming languages where just forgetting about some
memory location is entirely harmless (i.e., garbage-collected languages)
and logics where forgetting about some ownership is permitted (i.e., logics
with weakening). However, we argue that this, too, is not a great choice of

15 Appel, “Program logics – for cer-
tified compilers”, 2014 [App14]; Cao
et al., “VST-Floyd: A separation
logic tool to verify correctness of C
programs”, 2018 [Cao+18].

16 Hobor, “Oracle semantics”, 2008
[Hob08], §4.7, p. 88.

17 Cao, 2017 [Cao17].

18 Bizjak et al., “Iron: Managing
obligations in higher-order con-
current separation logic”, 2019
[Biz+19].

19 Cao, Cuellar, and Appel, “Bring-
ing order to the separation logic
jungle”, 2017 [CCA17b].

20 Having both weakening and ex-
cluded middle in a separation logic
implies that separating conjunction
and normal conjunction are equiv-
alent, which makes the separation
part of separation logic useless. A
short proof of this can be found
in an earlier draft of the “jungle”
paper ([CCA17a], Theorem 3).

82

Part I: Iris Chapter 6: Paradoxes

terminology. For one, as we have shown above, VST (a “malloc/free” logic
in this terminology) does not actually prove that all allocated memory
is freed again. Secondly, we have used Iris (a “garbage-collected” logic)
without any issue to reason about malloc/free programming languages. All
it takes is a proof rule like the following for the deallocation operation:21

{` 7→ v} free(`) {True}

With this setup, our proofs in Iris do not verify that all memory is
adequately freed, but our proofs do show that the program is free of
use-after-free or double-free errors.

For these reasons, we argue that neither of the previously proposed
terminologies are a good choice to distinguish separation logics with
and without weakening. We propose that, instead, we should borrow
terminology from the linear logic community, and call a separation logic
affine if it has weakening, and linear if it has not.

21 In fact, the latest version of HL in
our Coq formalization contains such
an operation.

83

Chapter 7

Key differences to prior work

A detailed review of prior work on separation logics (beyond §2) is outside
the scope of this dissertation, but in this chapter we will look at a few key
aspects in which Iris differs from many of its predecessor logics: Iris has
no “unstable” assertions (§7.1), Iris has its own distinct set of axioms for
its model of resources (§7.2), and Iris uses a substitution-based language
with a strict separation of “logic” and “program” variables instead of
one with an environment or mutable stack variables (§7.3). Another key
difference is that Iris is an affine logic, but this was already discussed
in §6.2.

7.1 Stability

One key property of Iris is that every proposition is stable: when doing a
proof where the current thread owns assertion P , then no action of other
threads can invalidate P . This is in contrast to the majority of other
CSLs,1 where the core points-to assertion ` 7→ v is stable under actions of
other threads, but which also have some form of unstable assertion. For
example, in iCAP, STSs (called regions in the tradition of original CAP)
are very similar to what we presented in §4.2, with one key difference: the
equivalent of StsStγ(s) in iCAP (tokens are handled separately) asserts
that we are exactly in state s (which is unstable), whereas the Iris variant
says we are at least in state s (which is stable).

In particular, in the STS from Figure 4.1 (page 49), StsStγ(pending)
would say that the state, right now, is pending. The problem with this
statement is that some other thread could make a transition of pending to
shot(n) any time! To account for this, whenever there could be interference
by other threads, logics like iCAP have an explicit side-condition requiring
the assertion to be stable. Unstable assertions are only allowed within the
verification of a single atomic instruction; when composing multiple such
Hoare triples, all pre- and postconditions need to be stable.

These logics then typically come with some set of rules defining when
an assertion is stable. For example, StsStγ(pending) is not stable, but
StsStγ(pending) ∨ ∃n. StsStγ(shot(n)) is; another example of a stable
assertion is StsStγ(pending) ∗ [tok]γ (where [tok]γ expresses ownership of
the token of protocol instance γ). These examples show that checking
if an assertion is stable requires putting together different parts of the
assertion and arguing that, even though these assertions individually are
all unstable, their composition is stable.

1 Dinsdale-Young et al., “Concurrent
abstract predicates”, 2010 [Din+10];
Svendsen, Birkedal, and Parkin-
son, “Modular reasoning about
separation of concurrent data struc-
tures”, 2013 [SBP13]; Raad, Villard,
and Gardner, “CoLoSL: Concur-
rent local subjective logic”, 2015
[RVG15]; Svendsen and Birkedal,
“Impredicative concurrent abstract
predicates”, 2014 [SB14]; da Rocha
Pinto, Dinsdale-Young, and Gard-
ner, “TaDA: A logic for time and
data abstraction”, 2014 [dDG14];
Nanevski et al., “Communicating
state transition systems for fine-
grained concurrent resources”, 2014
[Nan+14].

85

Part I: Iris Chapter 7: Key differences to prior work

When working on paper, this is “just” an inconvenience, but when
working in a proof assistant, stability needs to be formally established
everywhere. The only mechanized separation logic with unstable assertions
we are aware of is FCSL, and in their proofs stability reasoning frequently
makes up 20-30% of the size of the proof.2 This does not even account for
the extra cost of tracking stability in the kind of higher-order specification
that we often use in Iris (even the example specification from §3 involved
a higher-order quantification), where we would need to ensure that we
only quantify over stable propositions.

In contrast, Iris follows the approach that everything you can state is
stable. This removes any need for a stability side-condition. In some sense,
this is closest to the spirit of original separation logic, which likewise
does not have unstable assertions about owned resources3—enabling
stable statements about mutable locations was arguably one of its key
achievements. The price we pay for this is that changes become harder as
we have to make sure they do not invalidate assertions another thread
could be making. Indeed, the notion of a frame-preserving update precisely
captures those changes that make sure that every possible statement the
rest of the proof could make remains true—any possible resource the
frame could own remains valid. We find that to be a worthy trade-off,
given that most proofs only require a small handful of frame-preserving
updates that can be quickly proven by composing general RA properties.
This is in contrast to having to verify stability of every single proposition
that is used in a context where interference from other threads has to be
taken into account.

However, the downside of this is that users of Iris have to learn how to
wield RA combinators to express the interactions they need for the proof
at hand. This is probably the biggest hurdle someone has to overcome to
become proficient in Iris. The mindset has to shift from thinking primarily
about permissible transitions between the states of the data structure,
to thinking more about which stable statements each party needs to be
able to make and which transitions they have to rule out (such as “this
one-shot has been initialized to value n and n cannot change any more”, or
“I own the right to initialize this not-yet-initialized one-shot and nobody
else does”), and then turning those statements into RA elements (shot(n)
and pending).

Most of the time, we can express what we need through the combinators
described in §4.1 and Auth.4 For the rare case where that does not work, we
can always apply the STS construction to turn a description of permissible
transitions into an RA that can be used with Iris. This entails a lot of
(tedious to mechanize) reasoning about the closure of some set of states
under possible transitions of other threads—basically, reasoning about
stability. Iris does not remove the cost of that reasoning whenever it is
truly needed, but Iris demonstrates that in the vast majority of cases, the
power of a general state-transition system is not needed and we can get
away with simpler mechanisms that avoid reasoning about stability.

2 Sergey, Nanevski, and Banerjee,
“Mechanized verification of fine-
grained concurrent programs”, 2015
[SNB15], Table 1.

3 It does however have unstable
assertions about local variables; see
§7.3 for what we do in Iris instead.

4 Interestingly, we do not usually
obtain an RA whose possible
interactions are equivalent to
the STS one might intuitively
draw. The RA usually permits
more transitions, but those extra
transitions do not actually break
anything as long as certain key
transitions are ruled out.

86

Part I: Iris Chapter 7: Key differences to prior work

7.2 Resource algebra axioms

The axioms for resource algebras (Figure 3.4 on page 31) are geared
towards their use in Iris. Here, we compare those axioms with the
algebraic structures used by other separation logics.

Core. In prior work, there have been several presentations of general-
izations of PCMs that have “multiple units” or include a notion of a
“duplicable core”.

The terminology of a (duplicable) core was introduced by Pottier in the
context of monotonic separation algebras.5 VST6 also comes with its own
notion of separation algebras7 that, unlike PCMs, permit every element
to have a different unit, defined through the “core” function. A related
notion also appears in GPS.8

Some common properties hold in most of these works (either as axioms
or as admissible rules): The core must produce a unit (ra-core-id), be
idempotent (ra-core-idem), and be a homomorphism, i.e., be compatible
with composition: |a · b| = |a| · |b|. The last property is stronger than our
monotonicity axiom (ra-core-mono), and as such, the axioms of RAs
are weaker than those demanded by prior work. In fact, RAs are strictly
weaker: as mentioned before, the core of the STS RA (§4.2) is not, in
general, a homomorphism. This shows that demanding the core to be a
homomorphism, as prior work has done, rules out useful instances (i.e.,
STSs could not have a useful core).

The core axioms of separation algebras underlying VST demand that
any two compatible resources have the same core. Basically, this means
that the core only contains “static”, unchanging information that was
true from the beginning of the proof. (In VST, this is used to model
the persistent knowledge of which global functions exist in the program.)
This is unlike in Iris where, for example, shot(n) is its own core even
though n was only picked during the verification: the core of an RA can
be “dynamic”, it can contain information that is true forever into the
future but was not necessarily true forever into the past.

Another difference is the fact that our core may be partial, whereas in
prior work it was always a total function: every element had to have some
unit. As discussed in §4.1, partial cores play an instrumental role in our
approach to compose RAs out of simpler constructions and combinators
like sums.

Finally, Bizjak and Birkedal9 have shown that our notion of the core
is precisely what is needed to get a well-behaved notion of persistent
propositions, i.e., a persistence modality (�) that commutes with both
universal and existential quantification.

Cancellativity. Many separation logics, including VST,10 require resource
composition to be cancellative:

∀a, b, c. a · b = a · c⇒ b = c

This implies that the separating conjunction itself is also cancellative,
which is needed (together with precision of resource invariants, as men-

5 Pottier, “Syntactic soundness
proof of a type-and-capability
system with hidden state”, 2013
[Pot13].

6 Appel, “Program logics – for
certified compilers”, 2014 [App14].

7 Dockins, Hobor, and Appel,
“A fresh look at separation alge-
bras and share accounting”, 2009
[DHA09].

8 Turon, Vafeiadis, and Dreyer,
“GPS: Navigating weak memory
with ghosts, protocols, and separa-
tion”, 2014 [TVD14].

9 Bizjak and Birkedal, “On models
of higher-order separation logic”,
2017 [BB17].

10 Calcagno, O’Hearn, and Yang,
“Local action and abstract separa-
tion logic”, 2007 [COY07]; Dockins,
Hobor, and Appel, “A fresh look
at separation algebras and share
accounting”, 2009 [DHA09].

87

Part I: Iris Chapter 7: Key differences to prior work

tioned in §5.1) to justify soundness of separation logics that support the
conjunction rule:11 {P} e {Q1} ∧ {P} e {Q2} implies {P} e {Q1 ∧Q2}.
However, it is increasingly common for separation logics to not provide the
conjunction rule, and many of these logics do not require cancellativity.12
Recently, this axiom has also been dropped from VST as it turned out
not to be necessary.

The same applies to Iris, where the conjunction rule is invalidated by
frame-preserving updates: the proofs of the two Hoare triples could make
different frame-preserving updates, making the conjunction of their post-
conditions contradictory. Hence, RAs are not required to be cancellative.
In fact, we regularly use non-cancellative RAs such as natural numbers
with max for composition (which models a monotone counter).

Composition as relation or partial/total function. A notable difference be-
tween VST’s separation algebras and RAs is that we present the monoidal
operation (·) as a total function, whereas they represent this operation
as a ternary functional relation (that may be partial). It is also com-
mon, e.g., in Views,13 to model composition as a partial function (partial
functions and functional relations are isomorphic in set theory, but still
fundamentally different when formalized in a type theory such as the one
of Coq). In RAs, the validity predicate carries the information that would
usually be modeled through partiality.

The biggest benefit of making composition a total function is that we
can reason equationally, which makes it more convenient to carry out
proofs. Moreover, it is easy to implicitly assume that a partial function is
defined everywhere we care about when working on paper; however, when
carrying out mechanized proofs, this becomes quite burdensome. The
approach of using a total function with a validity predicate also scales
neatly to the notion of “step-indexed resource algebras” that is required
for higher-order ghost state.14

On the other hand, defining RAs like Ag (the variant of Ag0 from
§4.1 that supports higher-order ghost state) is quite challenging when
composition has to be a function in Coq’s type theory. Still, we find
that being able to directly compute and work with the uniquely defined
composition of two elements outweighs those problems.

One interesting recent development worth mentioning here is the work
by Krishna, Shasha, and Wies15 on flow: a PCM-like structure that
provides interesting ways to decompose a graph. Flow comes with a
composition relation that is not functional, and as such does not fit in
any of the algebraic structures discussed above. Flow has since been used
in Iris as well,16 but the authors had to resort to making an RA for sets
of flows such that composition could be cast as a function.

Frame-preserving updates. Frame-preserving updates in RAs are basi-
cally the same as semantic entailment in the Views framework,17 which
correspond to the action judgment of an operation that does nothing
(much like view shifts are very similar to Hoare triples for an expression
that does nothing). However, where Views is basically a general guide for

11 Gotsman, Berdine, and Cook,
“Precision and the conjunction rule
in concurrent separation logic”, 2011
[GBC11]; Vafeiadis, “Concurrent
separation logic and operational
semantics”, 2011 [Vaf11].

12 Jensen and Birkedal, “Fictional
separation logic”, 2012 [JB12];
Pottier, “Syntactic soundness
proof of a type-and-capability
system with hidden state”, 2013
[Pot13]; Dinsdale-Young et al.,
“Views: Compositional reasoning
for concurrent programs”, 2013
[Din+13].

13 Dinsdale-Young et al., “Views:
Compositional reasoning for concur-
rent programs”, 2013 [Din+13].

14 Jung et al., “Iris from the ground
up: A modular foundation for
higher-order concurrent separation
logic”, 2018 [Jun+18b].

15 Krishna, Shasha, and Wies,
“Go with the flow: Compositional
abstractions for concurrent data
structures”, 2018 [KSW18].

16 Krishna, Summers, and Wies,
“Local reasoning for global graph
properties”, 2020 [KSW20].

17 Dinsdale-Young et al., “Views:
Compositional reasoning for concur-
rent programs”, 2013 [Din+13].

88

Part I: Iris Chapter 7: Key differences to prior work

how to build a model of a separation logic with the user “bringing their
own logic”, Iris is designed to be itself a very general separation logic.

The main limitation of Views is that it effectively requires the user to
bake in a single, fixed invariant tying logical to physical resources (the
“reification function”), with no support for layering further invariants on
top of those logical resources. Iris, in contrast, provides logical support
for user-defined invariants over logical (ghost) resources. We have seen
in §4.4 how this mechanism can be used to build an abstraction layer that
employs fictional separation; this approach can be layered on top of itself
any number of times.

The closest equivalent to Views’ reification function in Iris is the state
interpretation of the weakest precondition;18 both are basically relations
between logical and physical states. But the state interpretation is just
an implementation detail of weakest preconditions, and most Iris users do
not have to be concerned with it at all. However, recent discussions on the
Iris-Club mailing list19 also raised some interesting ideas of generalizing
Auth (§4.4) to incorporate a reification function, which could help cover
some use-cases that so far required specialized constructions. Indeed, the
authoritative RA can be seen as a special case of a “view” where reification
is the identity function. Generalizing this to a more user-controlled form
of reification would, in some sense, “embed” a simple form of the Views
framework as an RA into Iris. Exploring this is left as future work.

7.3 Substitution-based language

The idealized language we use in Iris (HL/HeapLang, §3) is rather atypical
when compared with the idealized languages of other concurrent separation
logics: local variables are immutable and defined through substitution like
in the lambda calculus, instead of being mutable and defined via some
kind of “environment” which maps variable names to their current value.

The environment-based approach is meant to model mutable stack-
allocated variables of languages such as Java or C.20 These variables are
typically deeply integrated into the program logic in the sense that the
pre- and postconditions of Hoare triples can directly refer to their current
value, implicitly referring to the environment that maps variable names
to values. As a consequence, these logics have to add side-conditions to
rules such as the frame rule to make sure that the framed-away part does
not refer to variables that get changed, and the rules for mutating local
variables also become rather awkward as they have to ensure that every
reference to this variable is now adequately updated.

Already the original paper on CSL21 remarks:

Finally, the presence of the variable side conditions in the frame rule and
the concurrency proof rules is a continuing source of embarrassment.

Iris does not require any such side-conditions, and since local variables
cannot be mutated, there is no need for an awkward proof rule to account
for this operation. All mutation has to happen on the heap. This sounds
like it could become very tedious, and indeed the CSL paper theorizes
that this approach “trades simplicity for the logician (simpler looking

18 Krebbers et al., “The essence of
higher-order concurrent separation
logic”, 2017 [Kre+17].

19 Malecha, “Two monoid questions”,
2019 [Mal19].

20 However, the model is inadequate
for C because these stack-allocated
variables are not addressable, i.e.,
one cannot create a pointer to them.

21 O’Hearn, “Resources, concurrency,
and local reasoning”, 2007 [OHe07].

89

Part I: Iris Chapter 7: Key differences to prior work

proof theory) for complexity for the programmer”. However, in practice,
we find this system very easy to work with.

For the programmer, this results in an ML-style language. While implic-
itly making all local variables mutable (as is the case in most languages)
can sometimes be useful, OCaml programs do not become prohibitively
more complex just because such mutation has to be performed explicitly
on the heap. Moreover, OCaml is not alone here: for example, Rust (a
modern language with a C-like programming model for mutable local
variables) makes local variables immutable by default. Programmers
can opt-in to mutability, but in idiomatic Rust code, only a fraction of
variables actually gets mutated; the rest can be treated like an immutable
ML-style variable just fine. Of course, any Haskell programmer would be
bewildered by the idea that local variables could ever be mutable. All of
this goes to show that immutable local variables are perfectly practical.

On the specification side, restricting mutation to the heap is usually
not a great burden either, because only variables that actually need to
be mutated require dealing with points-to-assertions. When variables are
used to carry around pure values (e.g., for arithmetic), they are immutable
and can be directly referenced in specifications without any friction.

The most prominent prior approach to solve the problem of the frame
rule side conditions is to treat stack variables as a resource.22 However,
this requires explicitly stating in specifications which local variables are
owned. In “Variables as resource in separation logic” [BCY05], the authors
remark that the alternative of treating every variable as allocated on the
heap would turn even simple assertions such as x > y into ∃X,Y. x 7→
X ∗ y 7→ Y ∗X > Y , and indeed that would be quite painful—but since
substitution-based languages still support referencing immutable local
variables directly in specifications,23 this is not typically what happens.
Instead, x and y will be passed around by-value, leading to a specification
of x > y, which is even simpler than variables-as-resource. Passing around
points-to facts is only required for pass-by-reference, when the callee is
expected to actually mutate the pointed-to value as a side-effect—such
operations are typically avoided anyway to keep the code cleaner, and the
vast majority of specifications in HeapLang are as simple as they would
be with original CSL.

Another benefit of using substitution is that distinguishing “program”
variables (that are bound in the verified expression and can only be
used there) from “logical” variables (that are bound by logical quantifiers
or in the current logical context and can be used in any logical term,
including pre-/postconditions and, crucially, the expression that is being
verified) does not actually introduce any complications, not even during
mechanization. One might expect that having to care about the distinction
between program variables and logical variables would create some extra
mental and formal burden that one can only gloss over when working on
paper. However, it turns out that this is not the case, as is demonstrated
by the following derived proof rule:

22 Bornat, Calcagno, and Yang,
“Variables as resource in separation
logic”, 2005 [BCY05]; Parkinson,
Bornat, and Calcagno, “Variables
as resource in Hoare logics”, 2006
[PBC06]; Brookes, “Variables as re-
source for shared-memory programs:
Semantics and soundness”, 2006
[Bro06].

23 Or rather, we use logical variables
to abstract over the values of these
program variables—see the next
paragraph.

90

Part I: Iris Chapter 7: Key differences to prior work

hoare-let
{P} e1 {v. Q} ∀v. {Q} e2[v/x] {w. R}

{P} let x = e1; e2 {w. R}

This rule basically says that when stepping over a let-bound variable x in
the program, that program variable “becomes” a logical variable v!24 The
use of v in the substitution operation e2[v/x] is just like the possible uses
of v in Q and R: the logical variable represents any actual program-level
value. The substitution replaces the term x of type “program variable”
(as far as the logic is concerned, this is a closed term) with “whatever v
represents”, which is of typeVal.

In practice, this means that one does not have to think about two
kinds of variables: as soon as a program-level binder comes into scope, it
turns into a logical binder and can be used freely in any logical term. We
exploited this on paper before having the infrastructure to carry out Iris
proofs in Coq, going so far as to write x instead of v, entirely conflating
the two kinds of variables. We were worried that this sloppiness would
cause problems when mechanizing these proofs, but the opposite was
the case: even when doing fully mechanized proofs in Coq, this causes
absolutely no hassle.

To summarize, immutable local variables do not impose an undue burden
on the programmer, and defining their semantics by substitution means
that one never has to think about the distinction between logical and
program-level variables. The main benefit of introducing this distinction is
a simpler program logic (no side-conditions about free program variables).
Immutable local variables also lead to a simpler programming language
with only one source of mutability.25 In our opinion, one should have
very good reasons to deviate from this approach, such as having to
precisely model some real-world language in order to verify real-world
code. Otherwise, the simplifications afforded by relying on substitution
and restricting mutability to the heap are a clear win both for the language
and the program logic.

24 In Coq, what happens is that x
is a string, representing a variable
name in the deeply embedded
formalization of HL, and v is just a
Coq-level variable.

25 One might be concerned about
running into the usual issues around
representing binders and handling
capturing when one has to formalize
substitution in a proof assistant.
However, the programming lan-
guages we are considering are all
call-by-value and we are not verify-
ing open programs, so substitution
only ever acts on closed terms and
capturing is not an issue. Using sim-
ple strings to represent binders and
a naive implementation of substitu-
tion works fine. This is inspired by
“Software foundations (volume 2):
Programming language foundations”
[Pie+19].

91

Part II

RustBelt

Part II: RustBelt

RustBelt provides a formal model of Rust, with the goal of establishing
the safety of the core Rust type system and some key unsafe parts of
the Rust standard library. For motivation and key challenges of RustBelt,
see the introduction in §1.2. At the heart of RustBelt is λRust, a Rust
core language, with a type system modeling Rust-style ownership and
borrowing, together with a semantic interpretation (“logical relation”) of
that type system.

The second part of this dissertation begins with a brief Rust tutorial
in §8, enough so that readers unfamiliar with the language are able to follow
the subsequent chapters. Those chapters explain the various technical
aspects of RustBelt: the formal language that serves as a model of Rust
and its type system (§9), the lifetime logic that enables separation-logic
reasoning about borrowing (§11), the logical relation that gives semantic
meaning to the type system (§10 and §12), and finally the verification
of Cell and Mutex as two representative (but still comparatively simple)
unsafely implemented abstractions in the Rust standard library (§13).
Finally, we consider related work (§14).

94

Chapter 8

Rust 101

In this chapter, we give a brief overview of some of the central features of
the Rust type system, insofar as they are needed to understand RustBelt
and Stacked Borrows. We do not assume any prior familiarity with Rust.

The key principle of the Rust type system is the following exclusion
principle, also known as mutability XOR aliasing: data can either be
mutated exclusively through one unique pointer, or it can be immutably
shared amongst many parties—but not both at the same time. (There
is an exception to this that we will come back to later.) This obviously
prevents data races by ruling out mutable state shared across thread
boundaries, but as we will see the exclusion principle also rules out
other errors commonplace in low-level pointer-manipulating programs,
like use-after-free and double-free.

For most of the rest of this chapter, we will discuss the two key
mechanisms through which Rust enforces this principle: ownership and
borrowing. Afterwards, we will briefly mention the exception to the rule.

8.1 Ownership and ownership transfer

In Rust, the type of a variable not only represents information about the
values it can take—it also represents ownership of resources related to the
variable such as memory or file descriptors. When a variable gets passed
between functions or threads, the associated ownership is transferred or
“moved” with it. To see this principle in practice, consider the following
sample program:

1 let (snd, rcv) = channel();
2 join(
3 move || {
4 let mut v = Vec::new(); v.push(0); // v: Vec<i32>
5 snd.send(v);
6 // v.push(1); gives compiler error: v has been moved
7 },
8 move || {
9 let v = rcv.recv().unwrap(); // v: Vec<i32>
10 println!("Received: {:?}", v);
11 }
12);

Before we take a detailed look at the way the Rust type system handles
ownership, we briefly discuss the syntax and functions used here. let
is used to introduce local, stack-allocated variables. These can be made

95

Part II: RustBelt Chapter 8: Rust 101

mutable by using let mut. The function channel creates a typed multi-
producer single-consumer channel and returns the two endpoints as a
pair. The first line uses a pattern to immediately destruct this pair into
its components. The function join is essentially parallel composition; it
takes two closures and executes them in parallel, returning when both are
done.1 The vertical bars || mark the beginning of an anonymous closure;
if the closure would take arguments, they would be declared between
the bars. The move keyword indicates that ownership of the captured
variables is fully moved into the closure.2

In this example, the first thread creates a new empty vector v of
type Vec<i32> (a resizable heap-allocated array of 32-bit signed integers,
corresponding to std::vector<int> in C++) and pushes an element onto
it. Next, it sends v over the channel by passing it to send. Meanwhile,
the second thread receives a vector from the channel by calling recv.
However, recv is a fallible operation, so we call unwrap to trigger a panic
(which aborts execution of the current thread) in case of failure. Finally,
we print a debug representation of the vector (as indicated by the format
string "{:?}").

To see the type system in action, we consider what happens when we
change the sending thread to access v again in line 6 after sending it to
the other side: in that case, the typechecker shows an error, saying that
v has been “moved”. And it is indeed important that the typechecker
shows an error here, because when we sent v to the other thread, we
did not copy the underlying array that was allocated on the heap. In
Rust, parameter passing is shallow, which means that data behind pointer
indirections is not duplicated. This is much more efficient than a full copy,
but it means that both variables v in both threads actually point to the
same underlying data!3 Since accesses in Rust are non-atomic by default,
there is no synchronization and concurrent accesses to that shared data
would lead to data races.4 To avoid such problems, Rust prevents access
to v after it has been sent.

But how is the typechecker detecting this problem? In Rust, having
a value of some type indicates that we are the exclusive owner of the
data described by said type, and thus that nobody else has any kind of
access to this array, i.e., no other part of the program can write to or
even read from the array. When passing a variable like v to a function
like send, ownership of the data is considered to have moved, and is thus
no longer available in the caller.5 Thus, in line 6 v has been “given away”
and cannot be used any more, which leads to the error flagged by the
typechecker.

Automatic destructors. One aspect of low-level programming that is
distinctively absent in the code above is memory management. Rust does
not have garbage collection, so it may seem like our example program
leaks memory, but that is not actually the case: due to ownership tracking,
Rust can tell when a variable (say, the vector v in the receiving thread)
goes out of scope without having been moved elsewhere. When that is
the case, the compiler automatically inserts calls to a destructor, called
drop in Rust. For example, when the second thread finishes in line 11, v

1 join is not in the Rust standard
library, but part of Rayon [SM17], a
library for parallel data processing.

2 The alternative would be for the
closure to borrow the variables,
which we will get to later.

3 Of course, Rust provides a way
to do a deep copy that actually du-
plicates the array on the heap, but
it will not do this implicitly—deep
copies can become performance
bottlenecks, so Rust wants them to
be visible in the code.

4 This refers to the distinction
the C++ concurrent memory
model (which Rust inherits) does
between atomic accesses, which
are permitted to take part in race
conditions and can be used for
communication between threads,
and non-atomic accesses. A race
condition on a non-atomic access is
called a data race and considered
undefined behavior, which means
the compiler is free to assume that
data races do not happen.

5 In technical terms, Rust’s variable
context is substructural.

96

Part II: RustBelt Chapter 8: Rust 101

is dropped. Similarly, the sending and receiving ends of the channel are
dropped at the end of their closures. This way, Rust provides automatic
memory management without garbage collection, and with predictable
runtime behavior. The same approach can also automatically manage
other resources such as file descriptors which typical garbage collectors
do not provide any help with.

8.2 Mutable references

Exclusive ownership is a fairly straightforward mechanism for ensuring
data-race freedom. However, it is also very restrictive. In fact, close
inspection shows that even our first sample program does not strictly
follow this discipline. Observe that in line 4, we are calling the method
push on the vector v—and we keep using v afterwards. It would be very
inconvenient if pushing onto a vector required explicitly passing ownership
to push and back. Rust’s solution to this issue is borrowing, which is the
mechanism used to handle reference types.6 The idea is that v is not
moved to push, but instead borrowed—granting push access to v for the
duration of the function call.

This is expressed in the type of push: fn(&mut Vec<i32>, i32).7
The syntax v.push(0), as used in the example, is just syntactic sugar
for Vec::push(&mut v, 0), where &mut v creates a mutable reference
to v, which is then passed to push (i.e., v is passed by reference). A
mutable reference grants temporary exclusive access to the vector, which
in the example means that access is restricted to the duration of the
call to push. Another way to say this is that a mutable reference is a
unique pointer—there cannot be an alias elsewhere in the program that
can be used to access the same data. Because the access is temporary, our
program can keep using v when push returns. Moreover, the exclusive
nature of this access guarantees that no other party will access the vector
in any way during the function call, and that push cannot keep copies of
the pointer to the vector. Mutable references are always unique pointers.

The type of send, fn(&mut Sender<Vec<i32>>, Vec<i32>), shows
another use of mutable references. The first argument is just borrowed,
so the caller can use the channel again later. In contrast, the second
argument is moved, using ownership transfer as already described above.

8.3 Shared references

Rust’s approach to guaranteeing the absence of races and other memory
safety issues is to rule out the combination of aliasing and mutation—
what we called the exclusion principle above. So far, we have seen
unique ownership (§8.1) and (borrowed) mutable references (§8.2), both
of which allow for mutation but prohibit aliasing. In this section we
discuss another form of references, namely shared references, which form
the dual to mutable references: they allow aliasing but prohibit mutation.

Like mutable references, shared references grant temporary access to a
data structure, and operationally correspond to pointers. The difference is
in the guarantees and permissions provided to the receiver of the reference.

6 Other solutions to this problem
exist; e.g., Mezzo [BPP16] provides
a mechanism for making ownership
transfer more implicit.

7 We follow the usual Rust style and
omit the return type if it is the unit
type ().

97

Part II: RustBelt Chapter 8: Rust 101

While mutable references are exclusive (non-duplicable), shared references
can be duplicated. In other words, shared references permit aliasing. As
a consequence, to ensure data-race freedom and memory safety, shared
references are read-only.

We can see shared references in action in the following example:

1 let mut v = Vec::new(); v.push(1);
2 join(
3 || println!("Thread 1: {:?}", &v),
4 || println!("Thread 2: {:?}", &v)
5);
6 v.push(2);

This program starts by creating and initializing a vector v. Then it passes
a shared reference &v to two threads, which concurrently print the contents
of the vector. This time, the closures are not marked as move, which leads
to v being captured by-reference, i.e., at type &Vec<i32>. As discussed
above, this type is duplicable, so the type checker accepts using &v in
both threads.

The concurrent accesses to v use non-atomic reads, which have no
synchronization. This is safe because when a function holds a shared
reference, it can rely on the data-structure not being mutated—so there
cannot be any data races.8

Finally, when join returns, the example program re-gains full access
to the vector v and can mutate v again in line 6. This is safe because
join will only return when both threads have finished their work, so there
cannot be a race between the push and the println. This demonstrates
that shared references are powerful enough to temporarily share a data
structure and permit unrestricted copying of the pointer, but regain
exclusive access later.

Duplicable types and Copy. In Rust, properties of a type such as “du-
plicable” are expressed using marker traits. Traits in Rust are a form
of typeclasses and they are the primary abstraction mechanism of the
language. In general, T: Trait is a way to say that trait Trait is imple-
mented for type T, and thus the operations of the trait can be used on
variables of type T. In the special case of a marker trait, there actually is
no operation—the trait simply classifies types into those that implement
the trait and those that do not.

In particular, the built-in Copy marker trait is used to express that a
type is duplicable.9 Specifically, if a type implements Copy,10 it means
that doing a shallow copy (which, remember, is what Rust does to pass
arguments) suffices to duplicate elements of the type. Both &T and i32
are Copy (for any T)—however, Vec<i32> is not! The reason for this
is that Vec<i32> stores data on the heap, and a shallow copy does not
duplicate this heap data.

8.4 Interior pointers

So far, we used prevention of data races as the primary motivation for
Rust’s exclusion principle, and indeed ruling out shared mutable state is

8 Notice that this is a much stronger
guarantee than what C provides
with const pointers: in C, const
pointers prevent mutation by the
current function, however, they
do not rule out mutation by other
functions.

9 Technically speaking, Copy types
behave like unrestricted variables in
linear type systems.

10 We also sometimes say “the type
is Copy”, because there is nothing to
actually implement.

98

Part II: RustBelt Chapter 8: Rust 101

exactly what we need to ensure that non-atomic accesses do not cause data
races. A frequent question at this point is: can the rules be relaxed for
sequential programs? Do we really need to ensure that mutable references
are unique when everything is happening in the same thread, so there
cannot be any data races? The answer is yes, the exclusion principle is
crucial even in sequential code, because of interior pointers—pointers
that point into another data structure.

This is demonstrated by the following example, which we have already
seen in the introduction:11

1 let mut v = vec![10, 11];
2 let vptr = &mut v[1]; // Points *into* v.
3 v.push(12); // May reallocate the backing store of v.
4 println!("v[1] = {}", *vptr); // Compiler error!

Here, v is again of type Vec<i32>. vptr is a reference of type &mut i32
pointing into the allocation where v stores its data. Such interior pointers
are generally not supported in garbage-collected languages, but they are
widely used in languages such as C, C++, and Rust to achieve a more
compact and cache-friendly layout of data structures.

The problem with interior pointers becomes apparent in line 3 of the
example: v.push might have to allocate new space elsewhere on the heap
if there is not enough space for a third element in the original location.
The situation looks just like in the C++ example in Figure 1.1 (page 2).
By mutating v, we inadvertently deallocated the memory that vptr points
to. This is a memory safety violation, so the Rust typechecker has to be
able to detect it!

And indeed the Rust compiler refuses to compile this program, com-
plaining that we “cannot borrow v as mutable more than once at a time”
in line 4. The way it does that is by detecting a violation of the exclusion
principle: in line 3, both vptr and v point (directly or indirectly) to the
same memory, namely the array on the heap where the content of v is
stored. And in that same line, we are also performing a mutation of v.
This means we are trying to mutate data even though our pointer is not
unique, and this is a condition that the Rust typechecker can detect and
prevent.

The example demonstrates that the exclusion principle is crucial even
in sequential code.12 However, to explain better how exactly the Rust
typechecker goes about detecting the conflict between vptr and v here,
we need to introduce the concept of a lifetime.

8.5 Lifetimes

As previously explained, (mutable and shared) references borrow ownership
and thus grant temporary access to a data structure. Lifetimes answer
the question: just how long is temporary? The full form of a reference
type is actually &’a mut T or &’a T, where ’a is the lifetime of the
reference. Rust uses a few conventions so that lifetimes can be elided in
general, which is why they did not show up in the programs and types we
considered so far. However, lifetimes play a crucial role in explaining how
the example in §8.4 got rejected.

11 As discussed before, this is
basically a simplified variant of
the classical “iterator invalidation”
problem, where the pointer vptr
plays the role of the iterator.

12 Many other examples of this exist,
even some that do not require heap
allocation and work exclusively with
variables on the stack. They always
involve mutating operations that
“invalidate” pointers or iterators
in some way—e.g., by reallocating
some array on the heap as in our
example, or by changing a variable
of sum type to a different variant,
which invalidates interior pointers
into the previously active variant.

99

Part II: RustBelt Chapter 8: Rust 101

To ensure references get used correctly, the compiler enforces the
following two constraints:
1. The reference can only be used while its lifetime is ongoing, and
2. the original referent is not used at all (for mutable references) or does

not get mutated (for shared references) until the lifetime of the newly
created reference has expired.

The analysis checking these properties is called borrow checking. The
borrow checker essentially collects all these constraints and ensures that
there is a consistent way to assign lifetimes to references. To check (2),
the borrow checker also attaches a loan to the original referent of a new
reference. The loan has the same lifetime as the created reference, and
using the referent again induces a constraint that at this program point,
the lifetime of all loans (for a mutating use) or of all mutable loans (for a
read-only use) must have ended.13

In our slightly desugared example program, the compiler infers the
following lifetimes:14

1 let mut v = vec![10, 11];
2 let vptr = &’a mut v[1];
3 Vec::push(&’b mut v, 12);
4 println!("v[1] = {}", *vptr);

Lifetime ’b

Lifetime ’a

The lifetime ’b for the second borrow just spans the call of push in
line 3; there are no further restrictions, so the compiler makes ’b as short
as possible. However, in line 4 we use the reference vptr with lifetime ’a,
so to satisfy rule (1) we are forced to extend ’a until line 4. But this
means that when a reference to v gets created in line 3 (which counts as
a “use” of v), we still have an outstanding loan of v[1] for lifetime ’a!
This violates condition (2) of that loan, so the program gets rejected.

One way to avoid this problem is to reorder lines 2 and 3 of the original
example:

1 let mut v = vec![10, 11];
2 Vec::push(&’b mut v, 12);
3 let vptr = &’a mut v[1];
4 println!("v[1] = {}", *vptr);

Lifetime ’b

Lifetime ’a

Now each time a new reference gets created, there is no outstanding
loan: the loan of v for lifetime ’b ends before vptr gets created. Hence
the borrow checker accepts this program.

Reborrowing. From the above example, it may seem like lifetimes of
mutable references can never overlap, but that is not actually the case:
when we create a reference from an existing reference, their lifetimes will
actually be nested. For example:

1 let mut v = vec![10, 11];
2 let v2 = &’a mut v;
3 let vptr = &’b mut (*v2)[1];
4 println!("v[1] = {}", *vptr);
5 Vec::push(v2, 12); Lifetime ’a

Lifetime ’b

Here, vptr gets derived from v2. This operation is also called a reborrow.
To handle reborrowing, condition (1) from above gets extended to say

13 Notably absent from these rules is
any mentioning of aliasing. Indeed,
everything the compiler needs to
know about aliasing is abstracted
away through lifetimes and loan
tracking.

14 &’b mut v is meant to say “create
a mutable reference with lifetime
’b”. This is not actual Rust syn-
tax, we just use it for illustration
purposes.

100

Part II: RustBelt Chapter 8: Rust 101

that both the reference with lifetime ’a and all references derived from it
may be used only while ’a is ongoing. This ensures that we cannot use
reborrowing to “escape” usage restrictions of the parent pointer. Practi-
cally speaking, this means that the lifetime ’b of the “inner” reference
vptr must end before the lifetime ’a of the “outer” reference v2. This
gives rise to an “inclusion relation” between lifetimes: we say that ’b is
included in ’a.15

Notice how in the above example v2 and vptr are in some sense aliasing,
even though they are both mutable references which ought to be unique.
This is allowed because vptr is explicitly created from v2, so the compiler
knows that these mutable references alias. At any given place in the code,
one or the other may be used, but never both: while ’b lasts, vptr may
be used but v2 may not, and once ’b ends, v2 may be used again but
vptr may not. In that sense, both references are still unique.

This can also be seen when we try to add another use of vptr at the
end. Indeed, this would introduce a bug into our program: pushing to
v2 in line 5 might invalidate vptr, just like in our very first example!
Rust statically detects such a bug just as before: when creating vptr, a
loan gets attached to v2 remembering that this reference has been “given
away” and may not be used until ’b is over. So if ’b were to be extended
past line 5, then in line 5 the borrow checker would detect that v2 is
being used while there exists an outstanding loan of it, and that would
be flagged as an error for violating condition (2).

Shared references. As we have already seen, many shared references may
co-exist at the same time. This means they can give rise to overlapping
(non-nested) lifetimes:

1 let mut v = vec![10, 11];
2 let vptr = &’a v[1];
3 let vptr2 = &’b v[1];
4 println!("v[1] = {}", *vptr);
5 println!("v[1] = {}", *vptr2);

Lifetime ’a
Lifetime ’b

Here, we create two shared references to the same element of v, and the
calls to println demonstrate that they can both be used in an interleaved
fashion.

The borrow checker performs almost the same checks as for mutable
references, except that condition (2) gets weakened to ensuring that the
referent does not get mutated until the lifetime of the loan has expired.
So in line 2, a shared loan with lifetime ’a gets attached to v[1], which is
still outstanding when v[1] gets used again in line 3. However, creating
another shared reference to v[1] counts as a non-mutating use of it, and
so there is no conflict between the loan and the operation. Thus we just
add a second loan to v[1], this time for lifetime ’b. Only once both loans
have expired may v[1] be mutated again.

If we added a mutation of v (say, v.push(12)) between lines 3 and
4, the program would get rejected: such a mutation would be in conflict
with the outstanding shared loans with lifetimes ’a and ’b. The compiler
will also reject any attempt to write through a shared reference.

15 Rust actually uses the dual rela-
tion and speaks about ’a outliving
’b. This regularly leads to confusion
when talking about variance. Here
we follow the common convention
in mathematics to make the “less-
than (or equal)” relation the core
primitive.

101

Part II: RustBelt Chapter 8: Rust 101

Raw pointers. Sometimes, the aliasing discipline for references that the
borrow checker enforces is too strict. One typical example of this is a data
structure where the pointers form a cycle: this leads to there being many
paths to the same data (i.e., there is aliasing), and hence the borrow
checker will rule out all mutation. In this case, one option is to not use
references but instead employ raw pointers. Raw pointers in Rust basically
act like pointers in C: they are not checked by the compiler, and there
are no aliasing restrictions. For example, the following code demonstrates
a legal way to cause aliasing with raw pointers:

1 let mut x = 42;
2 let ptr1 = &mut x as *mut i32; // create first raw pointer
3 let ptr2 = ptr1; // create aliasing raw pointer
4 // Write through one pointer, observe with the other pointer.
5 unsafe { *ptr1 = 13; }
6 unsafe { println!("{}", *ptr2); } // Prints "13".

In line 2, we cast a reference to raw pointer type. Raw pointers can
be duplicated (there is no ownership attached to them), so we can just
copy that pointer in line 3. Then we can use both pointers despite their
aliasing, just as we would in C. However, we need to put these uses of
raw pointers inside an unsafe block to acknowledge that we did our due
diligence and manually ensured safety of all involved operations: since the
borrow checker does not do any tracking for raw pointers, the compiler
cannot itself guarantee that dereferencing them will not cause problems.

8.6 Interior mutability

So far, we have seen how Rust ensures memory safety and data-race
freedom by ruling out the combination of aliasing and mutation. However,
there are cases where shared mutable state is actually needed to (efficiently)
implement an algorithm or a data structure. To support these use-cases,
Rust provides some primitives providing shared mutable state. All of these
have in common that they permit mutation through a shared reference—a
concept called interior mutability.

At this point, one may be wondering—how does this fit together with
the exclusion principle and the story of mutation and aliasing being the
root of all memory and thread safety problems? The key point is that
these primitives have a carefully controlled API surface. Even though
mutation through a shared reference is unsafe in general, it can still be
safe when appropriate restrictions are enforced by either static or run-time
checks. This is where we can see Rust’s “extensible” approach to safety
in action. Interior mutability is not wired into the type system; instead,
the types we are discussing here are implemented in the standard library
using unsafe code (which we will verify in §13).

Cell. The simplest type with interior mutability is Cell:

1 let c1: &Cell <i32> = &Cell::new(0);
2 let c2: &Cell <i32> = c1;
3 c1.set(2);
4 println!("{:?}", c2.get()); // Prints 2

102

Part II: RustBelt Chapter 8: Rust 101

The Cell<i32> type provides operations for storing and obtaining its
content: set, which has type fn(&Cell<i32>, i32), and get, which
has type fn(&Cell<i32>) -> i32. Both of these only take a shared
reference, so they can be called in the presence of arbitrary aliasing. After
we just spent several pages explaining that safety in Rust arises from the
exclusion principle, now we have set, which seems to completely violate
this principle. How can this be safe?

The answer to this question has two parts. First of all, Cell only
allows getting a copy of the content via get; it is not possible to obtain
an interior pointer into the content. This rules out the host of problems
related to invalidation of interior pointers that we mentioned in §8.4. To
permit these copies, get requires the content of the Cell to be Copy. In
particular, get cannot be used with cells that contain non-Copy types like
Vec<i32>.16

However, there is still a potential source of problems, which arises from
Rust’s support for multithreading. In particular, the following program
must not be accepted:
1 let c = &Cell::new(0);
2 join(|| c.set(1), || println!("{:?}", c.get()));

The threads perform conflicting unsynchronized (non-atomic) accesses
to c, i.e., this program has a data race. To rule out programs like the one
above, Rust employs two marker traits: Send and Sync.

The Send marker trait encodes if elements of a type are “sendable to
another thread”. For example, Vec<i32> is Send because when the vector
is moved to another thread, the previous owner is no longer allowed to
access the vector—so it is fine for the new owner, in a different thread, to
perform any operation whatsoever on the vector. Likewise, Cell<i32> is
Send, reflecting that moving ownership of a Cell<i32> to another thread
is safe: the original thread loses access to it and the new thread gains
access, i.e., there is no risk of a data race.17

The type of join demands that the environment captured by the
closure satisfies Send. However, in our example, the closures are not
capturing a Cell<i32>—they are capturing a shared reference of type
&Cell<i32>.18 This is where the second marker trait comes in, Sync.

Sync encodes if elements of a type may be shared across thread bound-
aries. Where Send is about accessing data first in one thread and later
in another thread, Sync is about accessing the same data from multiple
threads at the same time. For example, Vec<i32> is Sync because shared
references only permit reading the vector, and it is fine if multiple threads
do that at the same time. However, Cell<i32> is not Sync because set
(which requires only a shared reference) is not thread safe. Whether T is
Sync determines whether &T is Send: a shared reference is “sendable” if
and only if the referent may be shared. This means that our reference
&Cell<i32> is not Send, which leads to the program above being rejected.

Mutex. The Cell type is a great example of interior mutability and a
zero-cost abstraction as it comes with no overhead: get and set compile to
plain unsynchronized accesses, so the compiled program is just as efficient
as a C program using shared mutable state. However, as we have seen,

16 Other methods can still be used
on Cell<Vec<i32>> though, such
as replace which overwrites the
content of a Cell and returns the
old content.

17 An example of a type that is
not Send is Rc<i32>, which is a
reference-counted pointer to an
i32. This reference counting is not
thread safe, so even full ownership
of one pointer to this object is not
sufficient to safely send it to another
thread. (Rust also provides the
thread-safe alternative Arc<i32>.)

18 The compiler notices that the
closures only use shared references
of c, and hence captures it by-
reference.

103

Part II: RustBelt Chapter 8: Rust 101

Cell pays for this advantage by not being thread safe. The Rust standard
library also provides primitives for thread-safe shared mutable state. Here
we take a closer look at Mutex, which implements mutual exclusion (via a
standard lock) for protecting access to some shared memory. Consider
the following example:

1 let mutex = Mutex::new(Vec::new());
2 join(
3 || {
4 let mut guard = mutex.lock().unwrap();
5 guard.push(0)
6 },
7 || {
8 let mut guard = mutex.lock().unwrap();
9 println!("{:?}", guard)
10 }
11);

This program starts by creating a mutex of type Mutex<Vec<i32>> ini-
tialized with an empty vector. In Rust, somewhat unconventionally, we
think of Mutex as “containing” the data that it guards.19 The mutex is
then shared between two threads (implicitly relying on Mutex<Vec<i32>>
being Sync). The first thread acquires the lock, and pushes an element to
the vector. The second thread acquires the lock just to print the contents
of the vector.

The guard variables are of type MutexGuard<’a, Vec<i32>> where ’a
is the lifetime of the shared mutex reference passed to lock (this ensures
that the mutex itself will stay around for at least as long as the guard).
Mutex guards serve two purposes. Most importantly, if a thread owns
a guard, that means it holds the lock. To this end, guards provide a
method deref_mut which turns a mutable reference of MutexGuard<T>
into a mutable reference of T. Very much unlike Cell, the Mutex type
permits obtaining interior pointers into the data guarded by the lock.
In fact, the compiler will insert calls to deref_mut automatically where
appropriate, making MutexGuard<’a, Vec<i32>> behave essentially like
&’a mut Vec<i32>. That explains why we can write guard.push(0) in
line 5.

Moreover, the guards are set up to release the lock when their destruc-
tors are called, which will happen automatically when the guards go out
of scope.20 To understand why there cannot be interior pointers into
the lock content any more at that point, we have to consider the type of
deref_mut:21

for<’a, ’b> fn(&’b mut MutexGuard<’a, T>) -> &’b mut T

In other words, the lifetime of the returned reference is restricted to the
lifetime of the original borrow of MutexGuard. Or, put differently, as long
as the returned reference is alive, there will also be an outstanding loan
for the guard. When the guard is dropped, the compiler ensures that
there are no outstanding loans and thus interior pointers obtained through
deref_mut have all expired.

19 This puts the Mutex API in
control of all accesses to its contents,
which it uses to ensure that access
is only possible when the lock has
been acquired.

20 We already mentioned these de-
structors when discussing automatic
resource management at the end of
§8.1. This provides another example
of what they can be useful for.

21 for<’a, ’b> is Rust syntax
for universal quantification over
lifetimes ’a and ’b.

104

Chapter 9

The λRust language and type system

In this chapter, we introduce λRust: our formal version of Rust. The Rust
surface language comes with significant syntactic sugar (some of which
we have already seen in §8). To simplify the formalization, λRust features
only a small set of primitive constructs and requires the advanced sugar
of Rust’s surface language to be desugared into these primitives. Indeed,
something very similar happens in the compiler itself, where surface Rust
is lowered into the Mid-level Intermediate Representation (MIR).1 λRust

is much closer to MIR than to surface Rust.
Before we present the syntax (§9.1), operational semantics (§9.2), and

type system (§9.3) of λRust, we highlight some of its key features:

• Programs are represented in continuation-passing style. This choice
enables us to represent complex control-flow constructs, like labeled
break and early return, as present in the Rust surface language.
Furthermore, following the correspondence of CPS and control-flow
graphs,2 this makes λRust easier to relate to MIR.

• The individual instructions of our language perform a single operation.
By keeping the individual instructions simple and avoiding large com-
posed expressions, it becomes possible to describe the type system in a
concise way.

• The memory model of λRust supports pointer arithmetic and ensures
that programs with data races or illegal memory accesses can reach
a stuck state in the operational semantics. In particular, programs
that cannot get stuck in any execution—a guarantee established by the
adequacy theorem of our type system (Theorem 5)—are data-race free.

As in Part I, we are using typewriter font for language-level terms,
sans-serif font for terms of the logic and type system, and italic font
for domains (corresponding to types in our Coq formalization). We
additionally use small-caps font to denote the fields of a record (which
will become relevant in sec:lrust:semtypes).

1 Matsakis, “Introducing MIR”, 2016
[Mat16a].

2 Appel, “Compiling with continua-
tions”, 2007 [App07].

105

Part II: RustBelt Chapter 9: The λRust language and type system

9.1 Syntax

The syntax of λRust is as follows:

Path 3 p ::= x | p.n
Val 3 v ::= false | true | z | ` | funrec f(x) ret k := F

Instr 3 I ::= v | p | p1 + p2 | p1 − p2 | p1 ≤ p2 | p1 == p2

| new(n) | delete(n, p) | ∗p | p1 := p2 | p1 :=n
∗p2

| p inj i:== () | p1
inj i:== p2 | p1

inj i:==n
∗p2

FuncBody 3 F ::= let x = I in F | letcont k(x) := F1 in F2

| newlft;F | endlft;F
| if p then F1 else F2 | case ∗p of F

| jump k(x) | call f(x) ret k

We let path offsets n and integer literals z range over the integers, and
sum indices i range over the natural numbers. The language has two
kinds of variables: program variables, which are written as x or f , and
continuation variables, which are written as k.

We distinguish four classes of expressions: function bodies F consist of
instructions I that operate on paths p and values v.

Values. Values only include the most basic kinds of data: the Booleans
false and true, integers z, locations ` (see §9.2 for further details), and
functions funrec f(x) ret k := F .3 There are no literals for products or
sums as these only exist in memory, represented by sequences of values
and tagged unions, respectively.

Paths. Paths are used to express the values that instructions operate
on. The common case is to directly refer to a local variable x. Beyond
this, paths can refer to parts of a compound data structure laid out in
memory: Offsets p.n perform pointer arithmetic, incrementing the pointer
expressed by p by n memory cells.

Function bodies. Function bodies mostly serve to chain instructions
together and manage control flow, which is handled through continuations.
Continuations are declared using letcont k(x) := F1 in F2, and called
using jump k(x). The parameters x are instantiated when calling the
continuation.4 We allow continuations to be recursive, in order to model
looping constructs like while and for.5

The “ghost instructions” newlft and endlft start and end lifetimes.
These instructions have interesting typing rules, which is why they cannot
be handled like normal instructions, but do not do anything operationally.6

Functions can be declared using funrec f(x) ret k := F , where f is
a binder for the recursive call, x is a list of binders for the arguments,
and k is a binder for the return continuation. The return continuation
takes one argument for the return value. Functions can be called using

3 Here, x denotes a list of variables.

4 This makes continuations look
a lot like “basic blocks with argu-
ments”, which are closely related
to SSA form. However, MIR is not
an SSA IR, and neither is λRust. In
SSA, these arguments would repre-
sent the current value of some local
variable; in λRust, they represent the
location of some local variable, and
the current value is stored at that
location.

5 Note that λRust does not support
mutually recursive continuations,
which means we cannot model
irreducible control flow. However,
such control flow does not arise in
Rust.

6 Technically speaking, only newlft
is special because it introduces a
new bound variable in the type
system (the new lifetime). For
consistency, we treat endlft the
same way.

106

Part II: RustBelt Chapter 9: The λRust language and type system

call f(x) ret k, where x is the list of parameters and k is the continuation
that should be called when the function returns.

Local variables of λRust—as represented by let bindings—are pure
values. This is different from local variables in Rust (and MIR), which are
mutable and addressable. Hence, to correctly model Rust’s local variables,
we allocate them on the heap and pass arguments in a “boxed” way, i.e.,
as pointers to values in memory. Figure 9.1 shows how this looks in
practice. Similar to prior work on low-level languages7, we do not make a
distinction between the stack and the heap.

fn option_as_mut<’a>
(x: &’a mut Option<i32>) ->
Option<&’a mut i32> {

match *x {
None => None,
Some(ref mut t) => Some(t)

}
}

funrec option_as_mut(x) ret ret :=
let r = new(2) in
letcont k() := delete(1, x); jump ret(r) in
let y = ∗x in case ∗y of
− r inj 0:== (); jump k()
− r inj 1:== y.1; jump k()

Figure 9.1: option_as_mut in
Rust and λRust.We see that on the right, the function argument x is a pointer, which

is dereferenced when used and deallocated before the function returns. In
this case, since the Rust program takes a pointer, x actually is a pointer
to a pointer. Similarly, a pointer r is allocated for the return value. Also
note that the memory backing x is explicitly deallocated via delete,
modeling the usually implicit deallocation of stack-allocated variables as
they go out of scope.

Instructions. The λRust language has instructions for the usual arithmetic
operations (addition, subtraction, less-or-equal and equality), memory
allocation, and deallocation, as well as loading from memory (∗p) and
storing a value into memory (p1 := p2). The memcpy-like instruction
p1 :=n

∗p2 copies the contents of n memory locations from p2 to p1. All
of these accesses are non-atomic, i.e., they are not thread safe. We will
come back to this point in §9.2.

The example above also demonstrates the handling of sums. Values of the
Option<i32> type are represented by a sequence of two base values: an
integer value that represents the tag (0 for None and 1 for Some) and, if
the tag is 1, a value of type i32 for the argument t of Some(t). If the tag
is 0, the second value can be anything. The instructions p1

inj i:== p2 and
p1

inj i:==n
∗p2 can be used to assign to a pointer p1 of sum type, setting both

the tag i and the value associated with this variant of the union, while
p1

inj i:== () is used for variants that have no data associated with them (like
None). The case ∗p command is used to perform case-distinction on the
tag of a sum stored in memory at location p, jumping to the n-th branch
for tag n. If there is no branch corresponding to the tag, the program gets
stuck. In contrast, if p is used for case-distinction on Boolean values.

7 Leroy et al., “The CompCert
memory model, version 2”, 2012
[Ler+12]; Krebbers, “The C stan-
dard formalized in Coq”, 2015
[Kre15]

107

Part II: RustBelt Chapter 9: The λRust language and type system

z ∈ Z
Expr 3 e ::= v | x

| e1.e2 | e1 + e2 | e1 − e2

| e1 ≤ e2 | e1 == e2

| e(e)
| ∗oe | e1 :=o e2

| CAS(e0, e1, e2)
| alloc(e) | free(e1, e2)
| case e of e

| fork { e }
Val 3 v ::= h | ` | z | rec f(x) := e

Loc 3 ` ::= (i, n)
Order 3 o ::= sc | na | na’

LockSt 3 π ::= writing | reading n

h ∈ Mem := (N× N) fin−⇀ LockSt×Val

Ctx 3 K ::= •
| K.e | v.K
| K + e | v +K | K − e | v −K
| K ≤ e | v ≤ K | K == e | v == K

| K(e) | v(v ++ [K] ++ e)
| ∗oK | K :=o e | v :=o K

| CAS(K, e1, e2)
| CAS(v0,K, e2)
| CAS(v0, v1,K)
| alloc(K)
| free(K, e2)
| free(e1,K)
| caseK of e

Figure 9.2: λRust core language
syntax.9.2 Operational semantics

The operational semantics of λRust is given by translation into a core
language (aptly named λRust-core), as defined in Figure 9.2. The core
language is a lambda calculus equipped with primitive values, n-ary
function calls, pointer arithmetic (e1.e2), and concurrency including two
different “memory orders” to distinguish atomic and non-atomic accesses.8
We define the semantics this way for three reasons. First of all, we can
model some of the λRust constructs (e.g., p1 :=n

∗p2) as sequences of
simpler instructions in the core language, which makes it easier to reason
about. Secondly, we can reduce both continuations and functions to plain
lambda terms, using the same underlying reasoning principles for both.
Finally, the core language supports a substitution-based semantics (§7.3),
which makes reasoning more convenient, whereas the CPS grammar given
above is not closed under substitution.

The operational semantics is formally defined in Figure 9.3. We use
evaluation contexts K to define where in the current expression the next
reduction will take place (O-ectx); the remaining rules define the possible
head reductions. In the following, we discuss some key aspects of this
language and how λRust is translated down to the core language.

Pointer equality. In Rust, safe code can perform pointer equality tests,
so we have to somehow model this feature in our core language as well.
However, pointer equality is a tricky subject in non-garbage-collected
languages: typically, you want to make sure that the program cannot
observe whether a newly allocated object reuses some memory that was
previously allocated to some other object. This ensures maximal freedom
when implementing the language semantics in a compiler. We can achieve

8 Some primitives of the core
language are not even exposed in
higher-level λRust, e.g., instructions
to spawn threads (fork { e }) or
perform atomic accesses (e1 :=sc

e2), including CAS (compare-and-
swap). Since these operations do
not have typing rules, they can
anyway only be used by unsafe
code which has full access to the
core language.

108

Part II: RustBelt Chapter 9: The λRust language and type system

Equality. h ` v1 = v2

h ` z = z h ` ` = `
`1 /∈ dom(h) ∨ `2 /∈ dom(h)

h ` `1 = `2

Inequality. h ` v1 6= v2

z1 6= z2

h ` z1 6= z2

`1 6= `2

h ` `1 6= `2

Small-step operational semantics. h | e→ h′ | e′1, e′?2

O-ectx
h | e→ h | e′1, e′?2

h | K[e]→ h | K[e′1], e′?2

O-proj
` = (i, n′)

h | `.n→ h | (i, n+ n′)

O-add
z1 + z2 = z′

h | z1 + z2 → h | z′

O-sub
z1 − z2 = z′

h | z1 − z2 → h | z′

O-le-true
z1 ≤ z2

h | z1 ≤ z2 → h | 1

O-le-false
z1 > z2

h | z1 ≤ z2 → h | 0

O-eq-true
h ` v1 = v2

h | v1 == v2 → h | 1

O-eq-false
h ` v1 6= v2

h | v1 == v2 → h | 0

O-alloc
n > 0 ` = (i, n′) {i} × N # dom(h) h′ = h[`+m←(reading 0,h) |m ∈ [<n]]

h | alloc(n)→ h′ | `

O-free
n > 0 ` = (i, n′) dom(h) ∩ {i} × N = {i} × ([≥n′, <n′ + n]) h′ = h[`+m←⊥ |m ∈ [<n]]

(h | free(n, `))→ (h′ | h)

O-deref-sc
h(`) = (reading n, v)

h | ∗sc`→ h | v

O-deref-na
h(`) = (reading n, v)

(h | ∗na`)→ (h[`←(reading n+ 1, v)] | ∗na’`)

O-deref-na’
h(`) = (reading n+ 1, v)

(h | ∗na’`)→ (h[`←(reading n, v)] | v)

O-assign-sc
h(`) = (reading 0, v′)

(h | ` :=sc v)→ (h[`←(reading 0, v)] | h)

O-assign-na
h(`) = (reading 0, v′)

(h | ` :=na v)→ (h[`←(writing, v′)] | ` :=na’ v)

O-assign-na’
h(`) = (writing, v′)

(h | ` :=na’ v)→ (h[`←(reading 0, v)] | h)

O-cas-fail
h(`) = (reading n, v′) h ` v′ 6= v1

(h | CAS(`, v1, v2))→ (h | 0)

O-cas-suc
h(`) = (reading 0, v′) h ` v′ = v1

(h | CAS(`, v1, v2))→ (h[`←(reading 0, z2)] | 1)

O-cas-stuck
h(`) = (reading n, v′) n > 0 h ` v′ = v1

(h | CAS(`, v1, v2))→ (h | 0())

O-case
(h | case i of e)→ (h | ei)

O-app
(h | (rec f(x) := e)(v))→ (h | e[rec f(x) := e/f, v/x])

O-fork
h | fork { e } → h | h, e

Figure 9.3: λRust-core opera-
tional semantics.

109

Part II: RustBelt Chapter 9: The λRust language and type system

this, for example, by requiring that pointers must not be dangling when
they are compared (i.e., they must still point to allocated memory).

The issue is that safe code can compare arbitrary pointers, including
dangling pointers. To still prevent the program from observing allocator
details, we thus went with a different approach: when comparing two
different locations `1 6= `2 of which one is dangling, the result of the
comparison is non-deterministic: it could be either true (represented
as 1) or false (represented as 0). To this end, the semantics of equality
is defined by O-eq-true and O-eq-false using two helper judgments,
h ` v1 = v2 and h ` v1 6= v2. These judgments define when two values can
be considered equal and when they can be considered inequal depending
on the current memory h—and these two cases are not mutually exclusive.

Pointer arithmetic. The memory model is inspired by CompCert9 in
terms of how it supports pointer arithmetic. As such, locations ` consist
of a block index i and an offset n into that block. A memory h is a
partial function mapping locations to values (and, as we will see in the
next paragraph, a lock state).10 Pointer arithmetic just acts on the offset
(O-proj); this reflects the fact that it is impossible to perform arithmetic
operations across memory blocks. Organizing memory in blocks also helps
to ensure the correct deallocation of memory: free may only be used to
deallocate an entire block at once (O-free).

Data races. On top of this, we want the memory model to detect and rule
out data races. Following C++11,11 we provide both non-atomic memory
accesses, on which races are considered undefined behavior, and atomic
accesses, which may be racy. However, for simplicity, we only provide
sequentially consistent (SC) atomic operations, avoiding consideration of
C++11’s relaxed atomics in this dissertation.12

We consider a program to have a data race if there are ever two
concurrent accesses to the same location, at least one of which is a write,
and at least one of which is non-atomic. To verify the absence of data
races in Iris, the operational semantics is carefully designed such that
programs with a data race can reach a stuck state in at least one execution.
This lets us prove the following theorem:

Theorem 3 (Data-race freedom). Given a program e with initial memory
h, if that combination of program and memory is safe (i.e., if no thread
ever reaches a stuck state), then it is data-race-free.

This theorem basically says that we can handle data races in the same
way as other safety concerns such as use-after-free: we prove a Hoare
triple for the code under consideration. Hoare triples imply that the
program cannot get stuck, so this is sufficient to establish safety and thus
data-race freedom.

To obtain Theorem 3, every memory location is equipped with some
additional state π ∈ LockSt resembling a reader-writer lock. The state
reading 0 (“there are 0 readers”) corresponds to the lock being unlocked.
A non-atomic access consists of two separate steps: first we acquire the
lock (a read lock for read accesses in O-deref-na, and a write lock for

9 Leroy et al., “The CompCert
memory model, version 2”, 2012
[Ler+12].

10 We also experimented with
representing the memory more
like N fin−⇀ N fin−⇀Val, but handling
lookups in such nested partial maps
turned out to be quite painful in
Coq.

11 ISO Working Group 21, “Pro-
gramming languages – C++”, 2011
[ISO11].

12 Notice that atomicity is a prop-
erty of the individual memory
access, not of the memory location.
The same location can be subject
to both atomic and non-atomic
accesses. This matches the approach
of LLVM IR, and C++20 is also
moving in this direction with the
introduction of atomic_ref.

110

Part II: RustBelt Chapter 9: The λRust language and type system

write accesses in O-assign-na). In the executing expression, we replace
the ordering parameter na by na’, which is not an actual memory ordering
but merely indicates that we have acquired the lock and the next reduction
step will finish the memory access. In the second step we then perform
the actual access and release the lock (O-deref-na’ and O-assign-na’).
Crucially, these steps are separately subject to interference, so other
threads could take turns between them. Moreover, if the first step cannot
work because the lock is already held by another thread, the program is
stuck.

Sequentially consistent (atomic) accesses, on the other hand, complete
in a single step of execution and they do not modify the lock. However,
they still check the lock to make sure that there is no conflicting non-
atomic access going on (O-deref-sc, O-assign-sc). Again, in case of
conflicting accesses, the program gets stuck.

Now imagine what happens when one thread does a non-atomic read
while another thread does an atomic write to the same location. There
exists an interleaving of these two threads where the first thread starts
with O-deref-na, changing the lock state of the location to reading 1.
Then the thread gets scheduled away and the writing thread wants to
take a turn with O-assign-sc—but it cannot, because that rule requires
the lock state to be reading 0. The second thread is stuck. A similar
situation arises for the other forms of data races (non-atomic read with
non-atomic write, atomic read with non-atomic write, non-atomic write
with atomic write, non-atomic write with non-atomic write).

Special care has to be taken for CAS(`, v1, v2): this operation atomi-
cally compares the current value at ` with v1, and if that comparison is
successful, stores v2 in `. This means that, depending on the result of the
comparison, a read or a write access happens, which affects the interaction
with the lock (O-cas-fail and O-cas-suc). Moreover, remember that
our equality test is non-deterministic, and sometimes two values can be
considered both equal and unequal. Now consider the situation where
a CAS performs such a non-deterministic comparison and ` is currently
read-locked: in case the comparison fails, the CAS only tries to acquire a
read lock, which is fine. However, in case the comparison succeeds, the
CAS tries to acquire a write lock, which would fail. Such a program has
a data race (the CAS could write), but the program is not stuck as it
can make progress via O-cas-fail. To establish Theorem 3, we have to
make sure that this program can still reach a stuck state. This is done by
O-cas-stuck, which applies in exactly the cases where the comparison
could succeed, but the lock is read-locked. In that case we reduce the
program to 0(); any stuck term would do.

Uninitialized memory. In our handling of uninitialized memory, we follow
“Taming undefined behavior in LLVM”:13 upon allocation, memory holds
a poison value h that will cause the program to get stuck if it is ever
used for a computation or a conditional branch. The only safe operations
on h are loading from and storing to memory. This ensures that in a
safe (stuck-free) program, uninitialized memory cannot affect the program
execution.

13 Lee et al., “Taming undefined
behavior in LLVM”, 2017 [Lee+17].

111

Part II: RustBelt Chapter 9: The λRust language and type system

Basics, function bodies, values.

let x = e in e′ := (rec ([x]) := e′)(e)
e′; e := let = e′ in e

skip := h;h

newlft := h

endlft := skip

false := 0
true := 1

if e0 then e1 else e2 := case e0 of [e1, e2]

(letcont k(x) := e in e′) := (let k = (rec k(x) := e) in e′)
jump k(e) := k(e)

(funrec f(x) ret k := e) := (rec f([k] ++ x) := e)
call f(e) ret k := f([k] ++ e)

Instructions.

new := rec new(size) :=
if size == 0 then (42, 1337) else alloc(size)

delete := rec delete(size, ptr) :=
if size == 0 thenh else free(size, ptr)

memcpy := rec memcpy(dst, len, src) :=
if len ≤ 0 thenh else

dst.0 := src.0;
memcpy(dst.1, len− 1, src.1)

∗e := ∗nae

e1 := e2 := e1 :=na e2

e1 :=n
∗e2 := memcpy(e1, n, e2)

e
inj i:== () := e.0 := i

e1
inj i:== e2 := e1.0 := i; e1.1 := e2

e1
inj i:==n

∗e2 := e1.0 := i; e1.1 :=n
∗e2

Figure 9.4: λRust syntax de-
fined in terms of the core
language.

Translation from λRust. Some λRust constructs, such as basic arithmetic
operations, are part of the core language and do not need any translation.
The rest is treated as syntactic sugar as defined in Figure 9.4.

As usual, we define let-bound variables and sequencing in terms of
immediately applied functions. We also define skip as an operation that
takes a step (and then reduces to the useless value h). For technical rea-
sons, the proof of endlft only works if there is some step of computation
being performed by the program.14

We also define Booleans and conditionals based on integers and case
in the straightforward way. Notice that O-le-true and all the other
rules have been written specifically with this interpretation of integers as
Booleans in mind.

The lowering to λRust-core also explains the difference between a con-
tinuation and a function in λRust. Continuations are just sugar for normal
functions in the core language, so “jumping” to a continuation is just a
function call. Proper λRust functions, on the other hand, are modeled as
λRust-core functions whose first argument serves as return continuation:
calling a function with a given return continuation boils down to passing
that continuation as the first argument to the function.

Finally, we have to implement the memory operations of λRust. Alloca-
tion and deallocation make direct use of the underlying core primitives,
except that those primitives do not permit empty allocations (O-alloc,

14 newlft does not do anything, and
we could have left it out of λRust
and made lifetime creation just
a “ghost step” in the type system.
Instead, we decided to make it
symmetric with endlft.

112

Part II: RustBelt Chapter 9: The λRust language and type system

O-free), so we need a special case for size 0. In that case, new returns the
“dummy” location (42, 1337) ∈ Loc. Any location would work, this address
will never actually be accessed. We just need a value which syntactically
is a location; that will later help to simplify our type system proofs.
λRust memory accesses are modeled as non-atomic accesses. To imple-

ment e1 :=n
∗e2, which copies a range of memory from wherever e2 points

to wherever e1 points, we use a memcpy function which is implemented
as a simple loop. The operations to initialize sum types write the given
index to memory at offset 0 and then put the rest of the data at offset 1.

9.3 Type system: Overview

As we have seen in §8, the fundamental principle of the Rust type system is
the idea that types represent ownership. As usual in ownership-based type
systems, this is reflected in the substructural nature of the type context.
This means that the context does not support the usual structural rule
of duplicating assumptions.15 But that is not all there is to the Rust
type system: in order to avoid having to thread ownership and data
through function calls, Rust uses references and borrowing (§8.2), granting
temporary access to a data structure. Rust uses the notion of a lifetime
(§8.5) to describe the duration for which access is granted. As such, it
should come as no surprise that lifetimes will play a key role in the λRust

type system.
Concretely, the types and contexts of λRust are as follows:

Lft 3 κ ::= α | static Mod 3 µ ::= mut | shr
Sort 3 σ ::= val | lft | type Γ ::= ∅ | Γ, X : σ

E ::= ∅ | E, κ ve κ
′ T ::= ∅ | T, p C τ | T, p C†κ τ

L ::= ∅ | L, κ vl κ K ::= ∅ | K, k C cont(L;x.T)
Type 3 τ ::= T | bool | int | ownn τ | &κµ τ | n | Πτ | Στ

| ∀α. fn(ϝ : E; τ)→ τ | µT. τ

Selected rules of the most important auxiliary judgments are shown
in Figure 9.5, and some of the rules for typing instructions and function
bodies are given in Figure 9.6. The remaining rules have been moved to
§9.4 to minimize clutter in this explanatory section. The sheer number of
rules can be quite intimidating, so after discussing the types and contexts
of the system, we will explain how to use these rules to typecheck two
examples.

The types τ of λRust. There are two kinds of pointer types: owned pointers
ownn τ and (borrowed) references &κµ τ .

Owned pointers ownn τ are used to represent full ownership of (some
part of) a heap allocation. Because we model the stack using heap
allocations, owned pointers also represent Rust’s local, stack-allocated
variables. As usual, τ is the type of the pointee. Furthermore, n tracks
the size of the entire allocation. This can be different from the size of τ
for inner pointers that point into a larger data structure.16 Still, most of
the time, n is the size of τ , in which case we omit the subscript.

15 Reordering and removing as-
sumptions from the context is still
supported.

16 Such pointers can be obtained
using C-split-own, which provides
a separate type assignment for
each field of a struct. This is used
to access a single field of a struct
behind an owned pointer. We will
come back to this rule in §9.4.

113

Part II: RustBelt Chapter 9: The λRust language and type system

References &κµ τ are qualified by a modifier µ, which is either mut (for
mutable references, which are unique) or shr (for shared references), and a
lifetime κ. References &κµ τ are borrowed for lifetime κ and, as such, can
only be used as long as the lifetime κ is alive, i.e., still ongoing. Lifetimes
begin and end at the newlft and endlft ghost instructions, following
F-newlft and F-endlft. Furthermore, the special lifetime static lasts
for the execution of the entire program.17 The type system is able to
abstract over lifetimes, so most of the time, we will work with lifetime
variables α.

The type n describes arbitrary sequences of n base values. This type
represents uninitialized memory. For example, when allocating an owned
pointer (rule S-new), its type is own n. Owned pointers permit strong
updates, which means their type can change when the memory they point
to is (re-)initialized. Similarly, the type changes back to own n when
data is moved out of the owned pointer (rule Tread-own-move). Strong
updates are sound because ownership of owned pointers is unique.

The types Πτ and Στ represent n-ary products and sums, respectively.
In particular, this gives rise to a unit type () (the empty product Π[])
and the empty type ! (the empty sum Σ[]). We use τ1 × τ2 and τ1 + τ2 as
notation for binary products (Π[τ1, τ2]) and sums (Σ[τ1, τ2]), respectively.

Function types ∀α. fn(ϝ : E; τ)→ τ can be polymorphic over lifetimes α.
The external lifetime context E can be used to demand that one lifetime
parameter be included in another one. The lifetime ϝ here is a binder
than can be used in E to refer to the lifetime of this function. For
example, the Rust type for<’a> fn(&’a mut i32) becomes ∀α. fn(ϝ :
ϝ ve α;&αmut int) → ().18 This is the type of a function that takes
a mutable reference to an integer with any lifetime that includes this
function call, and returns unit.19 This lifetime inclusion is implicit in
Rust; we chose to make all of these assumptions fully explicit in our
model. As discussed before, both the parameters and the return value
are transmitted via owned pointers; this calling convention is universally
applied and hence does not show up in the function type.20

Finally, λRust supports recursive types µT. τ , with the restriction (en-
forced by well-formedness as defined in §9.4) that T only appears in τ
below a pointer type or within a function type. This matches the re-
strictions on recursive types in Rust. These restrictions arise because
a type like µT. int × T would not even have a well-defined size:21 in
a typical functional language, such a type is implemented by adding a
pointer indirection, but Rust does not implicitly add indirections like that.
Instead, the user is required to acknowledge the indirection explicitly, by
writing µT. int× own T . This type is statically known to have size 2.

To keep the type system of λRust focused on our core objective (model-
ing borrowing and lifetimes), there is no support for type-polymorphic
functions. Instead, we handle polymorphism on the meta-level: in our
shallow embedding of the type system in Coq, we can quantify any defini-
tion and theorem over arbitrary semantic types (§10). We exploit this
flexibility when verifying the safety of Rust libraries that use unsafe
features (§13). These libraries are typically polymorphic, and by keeping

17 This corresponds to ’static in
Rust, which plays the same role.

18 for<’a> fn(&’a mut i32) is Rust
notation for a type that universally
quantifies over lifetime ’a. Usually,
we would just write fn(&mut i32),
which is a shorter way to implicitly
denote the same type.

19 As mentioned in §8.5, we use
lifetime inclusion to model the dual
of the “outlives” relation which the
Rust compiler employs.

20 Instead, it shows up in F-call
and S-fn.

21 The size of a type is defined in
§9.4. It indicates how many memory
locations it covers. Primitive types
(integers, Booleans) have size 1;
compound types (sums, products)
are larger. This is a good enough
model to make individual compo-
nents of compound types separately
addressable, but avoids going into
the details of integer bitwidth,
which are largely orthogonal.

114

Part II: RustBelt Chapter 9: The λRust language and type system

Lifetimes. Γ | E; L ` κ1 v κ2, Γ | E; L ` κ alive

Lincl-static
Γ | E; L ` κ v static

Lincl-local
κ vl κ ∈ L κ′ ∈ κ

Γ | E; L ` κ v κ′

Lincl-extern
κ ve κ

′ ∈ E
Γ | E; L ` κ v κ′

Lincl-refl
Γ | E; L ` κ v κ

Lalive-static
Γ | E; L ` static alive

Lalive-local
κ vl κ ∈ L ∀i. Γ | E; L ` κi alive

Γ | E; L ` κ alive

Lalive-incl
Γ | E; L ` κ alive Γ | E; L ` κ v κ′

Γ | E; L ` κ′ alive

Subtyping. Γ | E; L ` τ1 ⇒ τ2

T-bor-lft
Γ | E; L ` κ v κ′

Γ | E; L ` &κ
′

µ τ ⇒ &κµ τ

T-rec-unfold
Γ | E; L ` µT. τ ⇔ τ [µT. τ/T]

T-own
Γ | E; L ` τ1 ⇒ τ2

Γ | E; L ` ownn τ1 ⇒ ownn τ2

Type coercion. Γ | E; L ` T1 ⇒ T2

C-subtype
Γ | E; L ` τ ⇒ τ ′

Γ | E; L ` p C τ ⇒ p C τ ′

C-copy
Γ ` τ copy

Γ | E; L ` p C τ ⇒ p C τ, p C τ

C-weaken
Γ | E; L ` T,T′ ⇒ T

C-split-own
τ 6= [] ∀i. mi =

∑
j<i

size(τ j)

Γ | E; L ` p C ownn Πτ ⇔ p.m C ownn τ

C-share
Γ | E; L ` κ alive

Γ | E; L ` p C &κmut τ ⇒ p C &κshr τ

C-borrow
Γ | E; L ` p C ownn τ ⇒ p C &κmut τ, p C

†κ ownn τ

C-reborrow
Γ | E; L ` κ′ v κ

Γ | E; L ` p C &κmut τ ⇒ p C &κ
′

mut τ, p C
†κ′

&κmut τ

Reading and writing. Γ | E; L ` τ1

(τ τ2, Γ | E; L ` τ1 (τ τ2

Tread-own-copy
Γ ` τ copy

Γ | E; L ` ownn τ

(τ ownn τ

Tread-own-move
n = size(τ)

Γ | E; L ` ownm τ

(τ ownm n

Tread-bor
Γ ` τ copy Γ | E; L ` κ alive

Γ | E; L ` &κµ τ

(τ &κµ τ

Twrite-own
size(τ) = size(τ ′)

Γ | E; L ` ownn τ ′(τ ownn τ

Twrite-bor
Γ | E; L ` κ alive

Γ | E; L ` &κmut τ (
τ &κmut τ

Type context unblocking. Γ ` T1 ⇒†κ T2

Tunblock-hasty
Γ | T1 ⇒†κ T2

Γ | T1, p C τ ⇒†κ T2, p C τ

Tunblock-unblock
Γ | T1 ⇒†κ T2

Γ | T1, p C
†κ τ ⇒†κ T2, p C τ

Tunblock-skip
Γ | T1 ⇒†κ T2

Γ | T1, p C
†κ′

τ ⇒†κ T2, p C
†κ′

τ

Figure 9.5: Selection of the
typing rules of λRust (auxiliary
judgments). 115

Part II: RustBelt Chapter 9: The λRust language and type system

Typing of instructions. Γ | E; L | T ` I a x.T2

S-num
Γ | E; L | ∅ ` z a x. x C int

S-nat-leq
Γ | E; L | p1 C int, p2 C int ` p1 ≤ p2 a x. x C bool

S-fn
Γ ` τ ′ copy Γ ` τ ′ send

Γ, α, ϝ : lft, f, x, k : val | E,E′; ϝ vl [] | k C cont(ϝ vl []; y. y C own τ);
p C τ ′, x C own τ , f C ∀α. fn(ϝ : E; τ)→ τ ` F

Γ | E′; L′ | p C τ ′ ` funrec f(x) ret k := F a f. f C ∀α. fn(ϝ : E; τ)→ τ

S-path
Γ | E; L | p C τ ` p a x. x C τ

S-new
Γ | E; L | ∅ ` new(n) a x. x C ownn n

S-delete
n = size(τ)

Γ | E; L | p C ownn τ ` delete(n, p) a ∅

S-deref
Γ | E; L ` τ1

(τ τ ′1 size(τ) = 1
Γ | E; L | p C τ1 ` ∗p a x. p C τ ′1, x C τ

S-assgn
Γ | E; L ` τ1 (τ τ ′1

Γ | E; L | p1 C τ1, p2 C τ ` p1 := p2 a p1 C τ
′
1

S-sum-assgn
τ i = τ Γ | τ1 (Στ τ ′1

Γ | E; L | p1 C τ1, p2 C τ ` p1
inj i:== p2 a p1 C τ

′
1

Typing of function bodies. Γ | E; L | K; T ` F

F-consequence
Γ | E; L ` T⇒ T′ Γ | E ` K⇒ K′ Γ | E; L | K′; T′ ` F

Γ | E; L | K; T ` F

F-let
Γ | E; L | T1 ` I a x.T2

Γ, x : val | E; L | K; T2,T ` F
Γ | E; L | K; T1,T ` let x = I in F

F-letcont
Γ, k, x : val | E; L′ | K, k C cont(L′;x.T′); T′ ` F ′

Γ, k : val | E; L | K, k C cont(L′;x.T′); T ` F
Γ | E; L | K; T ` letcont k(x) := F ′ in F

F-jump
Γ | E; L ` T⇒ T′[y/x]

Γ | E; L | k C cont(L;x.T′); T ` jump k(y)

F-newlft
Γ, α : lft | E; L, α vl κ | K; T ` F

Γ | E; L | K; T ` newlft;F

F-endlft
Γ | E; L | K; T′ ` F T⇒†κ T′

Γ | E; L, κ vl κ | K; T ` endlft;F

F-case-bor
Γ | E; L ` κ alive ∀i. (Γ | E; L | K; T, p.1 C &κµ τi ` Fi) ∨ (Γ | E; L | K; T, p C &κµ Στ ` Fi)

Γ | E; L | K; T, p C &κµ Στ ` case ∗p of F

F-call
Γ | E; L ` T⇒ x C own τ ,T′ Γ | E; L ` κ alive Γ, ϝ : lft | E, ϝ ve κ; L ` E′

Γ | E; L | k C cont(L; y. y C own τ,T′); T, f C fn(ϝ : E′; τ)→ τ ` call f(x) ret k

Figure 9.6: Selection of the
typing rules of λRust (instruc-
tions and function bodies).

116

Part II: RustBelt Chapter 9: The λRust language and type system

the verification similarly polymorphic, we can prove that functions and
libraries are safe to use at any instantiation of their type parameters.

Contexts. The typing judgments for function bodies F and instructions I
have the shape Γ | E; L | K; T ` F and Γ | E; L | T1 ` I a x.T2. As we
can see, there are five different kinds of contexts.

The first context, the variable context Γ, is the only binding context.
It introduces all variables that are free in the judgment and keeps track of
whether they are program variables (x : val; this also covers continuations),
lifetime variables (α : lft), or type variables22 (T : type). All the remaining
contexts state facts and assert ownership related to variables introduced
here, but they do not introduce additional binders.

The external lifetime context E contains lifetime inclusion information
(κ ve κ

′) about lifetimes not under the current function’s control (i.e.,
the lifetimes a function is polymorphic over).

The local lifetime context L contains entries of the form κ vl κ. It tracks
which lifetime the current function has full control over—the lifetimes
listed here on the left-hand side can be ended any time (F-endlft). On
the right-hand side of the inclusion is a list of lifetimes that all outlive
κ; ending any of them will implicitly also end κ (in the same endlft).
When typing a function, initially only the function lifetime ϝ vl [] is listed
here; more lifetimes can be added through F-newlft.

The continuation context K is used to type continuations: an item
k C cont(L;x.T) says that continuation k can be called with arguments x
assuming the type information in T and the lifetime information in L can
be satisfied. When typechecking a function, the continuation context will
typically contain at least the return continuation. As usual with CPS,
since the return type is given by the return continuation, the function
judgment does not have a notion of a return type itself. Instructions
cannot invoke continuations, which is why their judgment does not have
a continuation context.

And finally, the typing context T is in charge of describing ownership of
local variables (in the type of a continuation, it expresses which ownership
the continuation requires). It mostly contains type assignments p C τ .23
Crucially, the typing context is substructural: type assignments can only
be duplicated if the type satisfies Γ ` τ copy (C-copy), corresponding
to Rust’s Copy bound.24 The typing judgment for instructions actually
involves two typing contexts: one expressing the types before the execution
of I, and one expressing the types after the execution. This is used to
express the possibility of I “using up” variables or changing their type.

One curious aspect of T is that it assigns types to paths p, not vari-
ables x. Conceptually, paths denote an individual field of a compound
data structure (in λRust, this means paths can refer to (nested) products).
In Rust, tracking of ownership and borrowing happens separately for each
field of a struct; to model this adequately, our typing context also tracks
fields separately using paths. Rules like C-split-own can be used to
convert back and forth between considering a compound data structure
as a whole, or in terms of its individual fields.

22 Type variables can only occur in
the definition of recursive types.

23 We will come back to the other
entries in T, the blocked type
assignments p C†κ τ , later.

24 We formally define Γ ` τ copy
in §9.4, but the upshot is that
all types we have seen so far are
duplicable except for owned pointers
and mutable references.

117

Part II: RustBelt Chapter 9: The λRust language and type system

9.3.1 Typechecking option_as_mut

To demonstrate how the contexts and typing rules of λRust are used, we
will go through part of the typing derivation of the example from §9.1.
Concretely, we aim to show the following:

∅ | ∅; ∅ | ∅; ∅ ` option_as_mut a f.
f C ∀α. fn(ϝ : ϝ ve α;&αmut (() + int))→ (() + &αmut int)

option_as_mut is a value and values are valid instructions, so we use the
instruction typing judgment here to say that, without any assumptions,
the function has the equivalent of the following Rust type:25

for<’a> fn(&’a mut Option<i32>) -> Option<&’a mut i32>

To derive the desired judgment, we start by applying S-fn, the rule
for typing values of function type. That rule is quite verbose, but all it
really does is set up the contexts.26 We have to derive a judgment for the
body of option_as_mut in the following initial contexts:

Γ1 := x : val, ret : val, α : lft, ϝ : lft
E1 := ϝ ve α

L1 := ϝ vl []
K1 := ret C cont(ϝ vl []; r. r C own (() + &αmut int))
T1 := x C own &αmut (() + int)

The external lifetime context E reflects the assumption made in the
function type, and the local lifetime context L declares our control over
the function lifetime ϝ.27 In principle, we could end ϝ at any time, but K
states that the return continuation ret requires as a precondition that ϝ
is still alive. If we ended that lifetime, we would not be able to return
from the current function. The type of ret also says that it expects one
argument r of our return type, Option<&’a mut i32>.

In the typing context, we have a single variable x (our argument),
which is an owned pointer to &αmut (() + int), the λRust equivalent of the
Rust type &’a mut Option<i32>. As already mentioned, the additional
owned pointer indirection here models the fact that x on the Rust side is
mutable and has an address in memory.

Under these initial contexts, the typing derivation is illustrated in Fig-
ure 9.7. We mostly use F-let to typecheck the function one instruction
at a time.

The first instruction is new, so we use S-new. That extends our typing
context with r being an uninitialized owned pointer:

x C own &αmut (() + int), r C own 2

Next, we declare a continuation (letcont k() := . . .); it gets added to
the continuation context K next to ret. The continuation k represents
the merging control flow after the case. Following F-letcont, we have
to pick T′, the typing context at the call site of the continuation. It turns

25 With lifetime elision,
this can be written as
fn(&mut Option<i32>) ->

Option<&mut i32>.

26 The typing rule also demands
that all captured variables have to
be Copy and Send (the respective
judgments are formally defined in
§9.4). This makes sure that func-
tions can only make use of globally
available, duplicable data. Notice
that we do not use functions to
model Rust’s closures; at the level
we work on (the MIR), closures
have already been converted to
explicit environments. The only
reason we permit functions to cap-
ture anything at all is to permit one
(global) function to call another.

27 Rust does not have a direct
equivalent of ϝ in its surface syntax;
instead it always implicitly assumes
that lifetime parameters like ’a
outlive the current function.

118

Part II: RustBelt Chapter 9: The λRust language and type system

funrec option_as_mut(x) ret ret :=
{E : ϝ ve α; L : ϝ vl [] | K : ret C cont(ϝ vl []; r. r C own (() + &αmut int)); T : x C own &αmut (() + int)}
let r = new(2) in (F-let, S-new)
{T : x C own &αmut (() + int), r C own 2} (we do not repeat unchanged contexts)
letcont k() := delete(1, x); jump ret(r) in (F-letcont)
{K : ret C . . . , k C cont(ϝ vl []; r C own (() + &αmut int), x C own 1)}
let y = ∗x in (F-let, S-deref, Tread-own-move)
{T : x C own 1, r C own 2, y C &αmut (() + int)}
case ∗y of (F-case-bor)
− r inj 0:== (); jump k()
− {T : x C own 1, r C own 2, y.1 C &αmut int}

r inj 1:== y.1; (F-let, S-sum-assgn, Twrite-own)
{T : x C own 1, r C own (() + &αmut int)}
jump k() (F-jump)

Figure 9.7: Example code with
annotated type and continua-
tion contexts.

out that the right choice is r C own (() + &αmut int), x C own 1. We also
have to pick the local lifetime context L′; for that, ϝ vl [] will do. Let us
omit checking that the continuation actually has this type, and continue
with the following new item in our continuation context:

k C cont(ϝ vl []; r C own (() + &αmut int), x C own 1)

Next, the code dereferences the argument (let y = ∗x), which un-
wraps the additional owned pointer indirection that got inserted in the
translation. Dereferencing is typechecked using S-deref. This rule
uses a helper judgment: Γ | E; L ` τ1

(τ τ2 means that we can read
a value of type τ (the pointee) from a pointer of type τ1, and doing
so will change the type of the pointer to τ2. In this case, we derive
own &αmut (() + int) (&αmut (()+int) own 1 from Tread-own-move. This
is a destructive read: the type of the pointer changes because we moved
the content out of the owned pointer. Effectively, x is now no longer
initialized. After this instruction, our typing context becomes:

x C own 1, r C own 2, y C &αmut (() + int)

Next, we have to typecheck the case using F-case-bor, which involves
loading the tag from y.28 Because we are dereferencing a reference (as
opposed to an owned pointer) here, the type system requires us to show
that the lifetime (α) is still alive. This is where the lifetime contexts E
and L come in: We have to show E; L ` α alive.

To this end, we first make use of the external lifetime context E,
which contains ϝ ve α. We apply Lalive-incl, reducing the goal to
E; L ` ϝ alive: because ϝ is shorter than α, it suffices to show that ϝ
is still alive. In the second step, we employ the presence of ϝ vl [] in
our local lifetime context L. Using Lalive-local, this assumption says
that ϝ is alive as long as all its superlifetimes are alive. Because ϝ has no
superlifetimes, this finishes the proof that ϝ is alive, and so is α.29

Having discharged the first premise of F-case-bor, let us now come to
the second premise: showing that all the branches of the case distinction

28 We assume that sums are always
represented as a tag in the first
location, followed by appropriately
typed data. Rust actually exploits
knowledge about the valid values
of a type, like the fact that ref-
erences are never null, to obtain
more efficient representations of
some sum types. This means that
Option<&mut T> is actually repre-
sented as a single machine word,
with null representing the None
case and all other values represent-
ing Some. We make no attempt to
model these layout optimizations
in λRust.

29 One might expect that the
presence of ϝ in the local lifetime
context alone is sufficient to show
that it is alive. In such an alterna-
tive version of λRust, Lalive-local
would be simpler, but ending a
lifetime would be more complicated
as we would have to ensure that all
its sublifetimes have been ended
before. We chose our design because
it maps most directly to the way
we model lifetimes semantically
(see §11).

119

Part II: RustBelt Chapter 9: The λRust language and type system

are well-typed. The case distinction operates on a pointer to () + int, so
in the branches, we can assume that y.1 (the data stored in the sum) is a
pointer to () or int, respectively.30 The second case is the more interesting
one, where we go on with the following typing context:

x C own 1, r C own 2, y.1 C &αmut int

The next instruction is r inj 1:== y.1, which is typechecked using S-sum-
assgn.31 Again the main work of adjusting the types is offloaded to a
helper judgment: Γ | E; L ` τ1 (τ τ2 means that we can write a value
of type τ to a pointer of type τ1, changing the type of the pointer to τ2.
In this case, we derive own 2 (()+&αmut int own (() + &αmut int) using
Twrite-own. This is a strong update, which changes the type of r from
uninitialized to the return type of our example function. Our context
thus becomes:

x C own 1, r C own (() + &αmut int)

Notice that y.1 disappeared from the context; it was used up when we
moved it into r.

Finally, we jump to the continuation k that we declared earlier. This
is typechecked using F-jump, which verifies that our current typing
context T and local lifetime context L match what is expected by the
continuation.

9.3.2 Typechecking borrowing

As a second example, we will typecheck the function in Figure 9.8 which
demonstrates how borrowing and ending a lifetime work.

fn bor_demo() -> i32 {
let mut x = 0;
let p = &mut x;
*p = 42;
x

}

funrec bor_demo() ret ret :=
let x = new(1) in
let v = 0 in x := v;
newlft;
let p = x in
let v = 42 in p := v;
endlft;
jump ret(r)

Figure 9.8: bor_demo in Rust
and λRust.

The Rust function creates a local variable x, then creates a reference r
pointing to x and writes through the reference. Finally, the value of x is
returned. On the λRust side, note again how x is a pointer to an integer,
to model mutability of x. A naive translation would also add an extra
pointer indirection to p, but since p is not mutated and does not have
its address taken, we can simplify things to represent p without an extra
indirection. This means that p and x are represented exactly the same
way. The fact that one is a fully owned stack variable, and the other just
a borrowed reference, will only be visible in the type system.

30 Actually, the rule is more power-
ful than that: for each branch, we
have the choice of either having y.1
in the context with a refined type,
or keeping y with the original type.
This is needed to model some tricky
Rust programs.

31 It may seem like F-let does not
apply since here the program is
built using sequencing instead of a
let-binding, but remember that in
Figure 9.4 we defined sequencing in
terms of let-bindings.

120

Part II: RustBelt Chapter 9: The λRust language and type system

The Rust function has type fn() -> i32, so we would like to derive
the following λRust typing judgment:

∅ | ∅; ∅ | ∅; ∅ ` bor_demo a f. f C fn(ϝ : ∅; ∅)→ int

Again we start by using S-fn. The initial contexts for deriving a typing
of the body look as follows:

Γ1 := ret : val, ϝ : lft
E1 := ∅
L1 := ϝ vl []
K1 := ret C cont(ϝ vl []; r. r C own int)
T1 := ∅

We show the code annotated with typing contexts in Figure 9.9. As no
continuations are defined in this example, the continuation context K
stays the same throughout the derivation.

The first instruction is S-new, so we obtain ownership of some unini-
tialized memory (x C own 1).

The second instruction just gives 0 a name because the grammar does
not permit storing values directly in locations. It is typed using S-num,
adding v C int to the context.

The next instruction is a simple assignment (this time, there are no
sum types involved), which is typed using S-assgn. This rule makes use
of the helper judgment for writing; we derive own 1 (int own int using
Twrite-own as before, saying that we can write an int to a pointer (x)
of type own 1 and that changes the pointer’s type to own int. We could
have duplicated v using C-copy if we wanted to keep it around, but we
will not need it any more, so we are fine with that type assumption being
removed from the context.

Now it gets interesting: we are starting a new lifetime using newlft, so
we have to apply F-newlft. This rule lets us pick a list of “superlifetimes”
of the new lifetime α, i.e., a list of lifetimes that are going to outlive (last
longer than) the new lifetime. In our case, we could pick the empty list,
but for demonstration purposes we are going to make ϝ a superlifetime.
This means that α vl [ϝ] is added to L.

The next line looks like a simple re-binding of x to p, but just using
S-path here would get us stuck later: this would remove x from the
typing context, but we are using x again as our return value. Instead,
remember that in the original Rust source program, the corresponding
code is let p = &mut x;—we have to borrow x ! Borrowing in λRust

is a “ghost step”, it only affects the typing context but has no direct
operational equivalent. The corresponding typing rule is C-borrow,
and it says that we can take our local variable x of owned pointer type
together with our newly created lifetime α, and replace x in the typing
context by x C &αmut int and x C†α own int. The two type assignments
say that on the one hand, we can now consider x a reference borrowed for
lifetime α (and that is the part we are going to use up in the assignment
to p), but on the other hand we also remember that when α ends, we can
get back full ownership of x. We say that this second type assignment is

121

Part II: RustBelt Chapter 9: The λRust language and type system

funrec bor_demo() ret ret :=
{E : ∅; L : ϝ vl [] | K : ret C cont(ϝ vl []; r. r C own int); T : ∅}
let x = new(1) in (F-let, S-new)
{T : x C own 1} (we do not repeat unchanged contexts)
let v = 0 in (F-let, S-num)
{T : x C own 1, v C int}
x := v; (F-let, S-assgn, Twrite-own)
{T : x C own int}
newlft; (F-newlft)
{L : α vl [ϝ] | T : x C own int}{

T : x C &αmut int, x C†α own int
}

(F-consequence, C-borrow)
let p = x in (F-let, S-path){

T : p C &αmut int, x C†α own int
}

let v = 42 in (F-let, S-num)
p := v (F-let, S-assgn, Twrite-bor){

T : p C &αmut int, x C†α own int
}

endlft; (F-endlft)
{x C own int}
jump ret(x) (F-jump)

Figure 9.9: Second example
code with annotated type
contexts.

blocked by the lifetime α. These blocked assignments roughly correspond
to the loans that the Rust type checker is tracking (see §8.5).

Now we are ready to use S-path, resulting in the following typing
context:

p C &αmut int, x C†α own int

To recapitulate, the overall effect of let p = x in on the typing context
was that p became a reference with lifetime α and the type assignment
of x became “blocked” for the same lifetime.

The next instruction is trivial, we are giving 42 the name v.
Then we use S-assgn again to write into the reference p, but this

time we use a different rule for the writing helper judgment: we derive
&αmut int(int &αmut int using Twrite-bor, which says that we can write
an int to a poiner of type &αmut int and that that write leaves the pointer’s
type unchanged. This derivation requires us to prove that α is alive, as is
the case every time we use a reference. In our case, α is a local lifetime,
so we can use Lalive-local, which demands that we show that all of
α’s superlifetimes are still alive. The goal thus becomes ϝ alive, for which
we use Lalive-local again, and since ϝ has no superlifetimes we are
done.32

With this, we arrive at the endlft, meaning we are going to use F-
endlft. This rule lets us end any local lifetime. Most importantly, it
lets us unblock blocked type assignments as defined by the unblocking
judgment T⇒†κ T′, which replaces all C†κ by C and otherwise leaves T
unchanged. In our case, this means we get full ownership of x back, just
as one would expect when the borrow expires. (Technically, we could

32 The check that ϝ is still alive is
necessary because F-endlft would
let us end ϝ any time, and that
would also implicitly end α as it is a
sublifetime of ϝ.

122

Part II: RustBelt Chapter 9: The λRust language and type system

keep ownership of p, but it would be useless since we can no longer show
α alive. Hence we use C-weaken to simply forget about p.)

The final instruction jumps to the return continuation, and since all
types match up, this is trivial to typecheck with F-jump.

9.3.3 Further type system features

Now is a good time to go back to Figure 9.5 and Figure 9.6 and read all
of the typing rules presented there; the following few paragraphs discuss
the ones that were not needed for the examples.

External lifetime context satisfaction Γ | E; L ` E′ is used on function
calls to check the assumptions made by the callee (F-call). It uses the
lifetime inclusion judgment to check that every inclusion in E′ can be
derived using the information in E and L.

The C in F-call indicates that we are requiring a list of type assign-
ments in the context, matching a list of variables (x) with an equal-length
list of types (own τ).

Subtyping is described by Γ | E; L ` τ1 ⇒ τ2. The main forms of
subtyping supported in Rust are lifetime inclusion (T-bor-lft) and
(un)folding recursive types (T-rec-unfold). Apart from that, we have
the usual structural rules witnessing covariance and contravariance of
type constructors (T-own is a representative example). On the type
context level, Γ | E; L ` T1 ⇒ T2 lifts subtyping (C-subtype, this is
the “subsumption” rule) while also adding a few coercions that can only
be applied at the top-level type. Most notably, a mutable reference can
be coerced into a shared reference (C-share), an owned pointer can be
borrowed (C-borrow) to create a mutable reference, and a mutable
reference can be reborrowed (C-reborrow).33

9.4 Type system: Appendix

In Figure 9.5 and Figure 9.6, we only gave the typing rules that have
been necessary to typecheck the examples, and we omitted some trivial
definitions such as well-formedness or the size of a type. In this section,
we give all the remaining definitions with brief explanations of anything
unusual.

We begin with the well-formedness judgments, which are mostly concerned
with defining the binding structure of the various type system components.
The only interesting aspect here is well-formedness of recursive types,
which requires the recursive occurrence to be below a pointer or function
type. In the remainder of this dissertation, we implicitly work only with
well-formed objects.

Well-formed paths. Γ `wf p

x : val ∈ Γ
Γ `wf x

Γ `wf p
Γ `wf p.n

33 There is no need to reborrow
shared references because they
are duplicable, and hence we can
keep the original pointer while also
using subtyping to obtain a shorter
lifetime in a copy.

123

Part II: RustBelt Chapter 9: The λRust language and type system

Well-formed lifetimes. Γ `wf κ

α : lft ∈ Γ
Γ `wf α

Γ `wf static

Well-formed external lifetime contexts. Γ `wf E

Γ `wf ∅
Γ `wf L Γ `wf κ Γ `wf κ′

Γ `wf L, κ ve κ
′

Well-formed local lifetime contexts. Γ `wf L

Γ `wf ∅
Γ `wf L Γ `wf κ ∀κ′ ∈ κ. Γ `wf κ′

Γ `wf L, κ vl κ

Well-formed types. Γ `wf τ

T : type ∈ Γ
Γ `wf T

Γ `wf bool Γ `wf int Γ `wf n
Γ `wf τ

Γ `wf ownn τ
Γ `wf κ Γ `wf τ

Γ `wf &κµ τ

∀i. Γ `wf τ i
Γ `wf Πτ

∀i. Γ `wf τ i
Γ `wf Στ

Γ, α, ϝ : lft `wf E ∀i. Γ, α : lft `wf τ i Γ, α : lft `wf τ
Γ `wf ∀α. fn(ϝ : E; τ)→ τ

Γ, T : type `wf τ T only occurs below pointer or function types in τ
Γ `wf µT. τ

Well-formed type contexts. Γ `wf T

Γ `wf ∅
Γ `wf T Γ `wf p Γ `wf τ

Γ `wf T, p C τ
Γ `wf T Γ `wf p Γ `wf κ Γ `wf τ

Γ `wf T, p C†κ τ

As we have already mentioned in the previous section, all types have a
size indicating how many memory locations are taken up by instances of
this type. size(τ) is a function computing that size for the given type τ .

Size. size(τ)

size(bool) := 1 size(ownn τ) := 1
size(int) := 1 size(&κµ τ) := 1

size(n) := n size(Πτ) :=
∑
i

size(τ i)

size(Στ) := 1 + max
i

size(τ i)

size(µT. τ) := size(τ) size(∀α. fn(ϝ : E; τ)→ τ) := 1

124

Part II: RustBelt Chapter 9: The λRust language and type system

We need some simple judgments which correspond to the Rust traits Copy,
Send and Sync.

Γ ` τ copy reflects Copy, which indicates that a type can be freely du-
plicated. All base types except for owned pointers and mutable references
are Copy, and structural types are Copy whenever all their components
are. (In particular, recursive type variables can be assumed to be Copy.)

Γ ` τ send and Γ ` τ sync, reflecting Send and Sync, describe types that
can be safely sent to another thread or shared across thread boundaries.
In the syntactic type system we have seen so far, all types are both Send
and Sync, but for some of the unsafely implemented types we are going
to consider in §13 that will not be the case. We will come back to these
properties in §12.4.

Copy types. Γ ` τ copy

Γ ` bool copy Γ ` int copy Γ ` n copy Γ ` &κ
shr τ copy

∀i. Γ ` τi copy
Γ ` Πτ copy

∀i. Γ ` τi copy
Γ ` Στ copy

Γ ` (∀α. fn(ϝ : E; τ)→ τ) copy Γ ` T copy
Γ, T : type ` τ copy

Γ ` µT. τ copy

Send types Γ ` τ send

Γ ` bool send Γ ` int send Γ ` n send
Γ ` τ send

Γ ` ownn τ send
τ send

&κ
mut τ send

Γ ` τ sync
Γ ` &κ

shr τ send

∀i. Γ ` τi send
Γ ` Πτ send

∀i. Γ ` τi send
Γ ` Στ send

Γ ` (∀α. fn(ϝ : E; τ)→ τ) send Γ ` T send
Γ, T : type ` τ send

Γ ` µT. τ send

Sync types Γ ` τ sync

Γ ` bool sync Γ ` int sync Γ ` n sync
Γ ` τ sync

Γ ` ownn τ sync
Γ ` τ sync

Γ ` &κ
mut τ sync

Γ ` τ sync
Γ ` &κ

shr τ sync

∀i. Γ ` τi sync
Γ ` Πτ sync

∀i. Γ ` τi sync
Γ ` Στ sync

Γ ` (∀α. fn(ϝ : E; τ)→ τ) sync Γ ` T sync
Γ, T : type ` τ sync

Γ ` µT. τ sync

For space reasons, we omitted the transitivity rule for lifetime inclusion
and the rule for unblocking an empty context in Figure 9.5; they are given
below. We also formally define the rather unremarkable external lifetime
context satisfiability judgment.

Lifetime inclusion. Γ | E; L ` κ1 v κ2

Lincl-trans
Γ | E; L ` κ v κ′ Γ | E; L ` κ′ v κ′′

Γ | E; L ` κ v κ′′

125

Part II: RustBelt Chapter 9: The λRust language and type system

External lifetime context satisfiability. Γ | E1; L1 ` E2

Esat-empty
Γ | E1; L1 ` ∅

Esat-incl
Γ | E1; L1 ` κ v κ′ Γ | E1; L1 ` E2

Γ | E1; L1 ` E2, κ ve κ
′

Type context unblocking. Γ ` T1 ⇒†κ T2

Tunblock-empty
Γ | ∅ ⇒†κ ∅

The remaining subtyping rules are mostly structural: shared references,
products and sums are covariant (just like owned pointers, as already
defined before); mutable references are invariant; and functions as usual
are covariant in their return type and contravariant in their argument type.
Recursive types are covariant, but the rule for this makes use of meta-level
implication, which usually has no place in a syntactic type system—the
rule resembles what we have proven semantically, but properly expressing
that syntactically would require introducing a context of “subtyping
assumptions”. We also have reflexivity and transitivity of subtyping.

Note that unlike typical unique pointers, mutable references have to
be invariant because they are borrowed: when the lifetime ends, the
lender will expect data of the original type τ , not some supertype τ ′. The
difference to unique pointers arises because mutable references are only
unique for their lifetime.

And finally, T-uninit-prod declares the equivalence of a single large
chunk of uninitialized memory with a product type where each component
is uninitialized. (Note that the sum sign here is a sum of integers, not
a sum type.) This rule is used when typechecking the initialization of a
product: one large allocation is made, T-uninit-prod is used to give that
allocation product type, C-split-own (from Figure 9.5) is used to view
each field of the product as an individual path, and then they can all be
initialized with the usual strong update via S-assgn and Twrite-own.

An equivalence (⇔) in a conclusion is sugar for two rules witnessing
both directions. An equivalence in an assumption is sugar for requiring
both directions to hold for the rule to apply.

Subtyping. Γ | E; L ` τ1 ⇒ τ2

T-refl
Γ | E; L ` τ ⇒ τ

T-trans
Γ | E; L ` τ ⇒ τ ′ Γ | E; L ` τ ′ ⇒ τ ′′

Γ | E; L ` τ ⇒ τ ′′

T-uninit-prod
Γ | E; L ` Σn ⇔ Π n

T-rec
∀τ ′1, τ ′2. (Γ | E; L ` τ ′1 ⇒ τ ′2)⇒ (Γ | E; L ` τ1[τ ′1/T1]⇒ τ2[τ ′2/T2])

Γ | E; L ` µT1. τ1 ⇒ µT2. τ2

T-bor-shr
Γ | E; L ` τ1 ⇒ τ2

Γ | E; L ` &κshr τ1 ⇒ &κshr τ2

126

Part II: RustBelt Chapter 9: The λRust language and type system

T-bor-mut
Γ | E; L ` τ1 ⇔ τ2

Γ | E; L ` &κmut τ1 ⇔ &κmut τ2

T-prod
∀i. Γ | E; L ` τ i ⇒ τ ′i

Γ | E; L ` Πτ ⇒ Πτ ′

T-sum
∀i. Γ | E; L ` τ i ⇒ τ ′i

Γ | E; L ` Στ ⇒ Στ ′

T-fn
Γ, α′, ϝ : lft | E′,E0; L0 ` E[κ/α]

∀i. Γ, α′, ϝ : lft | E′,E0; L0 ` τ ′i ⇒ τ i Γ, α′, ϝ : lft | E′,E0; L0 ` τ ⇒ τ ′

Γ | E0; L0 ` ∀α. fn(ϝ : E; τ)→ τ ⇒ ∀α′. fn(ϝ : E′; τ ′)→ τ ′

The only interesting type coercion rule we did not discuss yet is C-split-
bor, which is the equivalent of C-split-own for references. (Again
the sum sign here refers to a sum of integers.) The rule requires the
list of types τ in the product to be non-empty, because otherwise the
right-hand side of this bidirectional type coercion would be empty—and
we cannot conjure references (or owned pointers) to empty products out
of nothing, they still have to be syntactically a pointer at least. The other
side-condition handles the offsets: mi is the offset of the i-th field, so it
has to equal the sum of the sizes of all fields before it.

Continuations do not have any interesting coercions. The judgment
expresses that the context can be reordered, weakened, and that the
assumptions the coercion is making about the type context behave con-
travariantly.

Type coercion. Γ | E; L ` T1 ⇒ T2

C-perm
T′ is a permutation of T

Γ | E; L ` T⇒ T′

C-frame
Γ | E; L ` T1 ⇒ T2

Γ | E; L ` T′,T1 ⇒ T′,T2

C-split-bor
τ 6= [] ∀i. mi =

∑
j<i

size(τ j)

Γ | E; L ` p C &κµ Πτ ⇔ p.m C &κµ τ

Continuation coercion. Γ | E ` K1 ⇒ K2

K′ is a permutation of K
Γ | E ` K⇒ K′

Γ | E ` K,K′ ⇒ K
Γ | E ` K⇒ K′ Γ, x : val | E; L ` T′ ⇒ T

Γ | E ` K, k C cont(L;x.T)⇒ K′, k C cont(L;x.T′)

Most of the remaining typing rules for instructions do not really introduce
anything new. We can type Boolean values and integer arithmetic, and
we have various variants of assignment that all make use of the helper
judgment for writing which expresses how the types change when memory
gets written to. The memcpy rules (S-memcpy and S-sum-memcpy)
perform both read and write accesses, so they also make use of the reading
helper judgment that we have seen before with S-deref.

The only interesting rules we have not discussed yet are S-deref-bor-
own and S-deref-bor-mut. The point of these rules is to overcome a
limitation of the dereferencing rule S-deref that we used in our examples:
it creates a copy of the data behind the pointer, so this rule only lets us
dereference pointers to Copy types. That makes the rule insufficient to
typecheck Rust programs that perform (re)borrowing of nested pointers:
given a reference x: &’a &’b mut T (i.e., a shared reference to a mutable

127

Part II: RustBelt Chapter 9: The λRust language and type system

reference), we can obtain a shared reference to the inner T via dereferencing
(*x: &’a T). This is not a plain copy of the inner reference, because
its type changes: the new reference is shared, and it will have the outer
of the two lifetimes (’a) which Rust enforces to always be shorter than
the inner lifetime. In other words, a mutable reference “below” a shared
reference basically becomes itself shared, and we can get shared access
to all data it points to, but subject to the shorter outer lifetime ’a. If
the outer reference is mutable, then we can even get mutable access to
the inner data (the T), but still at the shorter outer lifetime.34 And if the
inner reference is instead an owned pointer, then it does not even have a
lifetime to worry about. S-deref-bor-mut and S-deref-bor-own are
responsible for typing the dereferencing of such nested pointers.

The remaining cases of nested pointers can be typechecked as well: if the
outer pointer is owned (for example, given a pointer of type own own τ),
we can use C-borrow to turn it into a reference (&κmut own τ), and then
S-deref-bor-own or S-deref-bor-mut applies. If the inner pointer
is a shared reference, we can use S-deref, and in that case we actually
obtain a proper copy of the inner reference at its full lifetime.

Well-typed instructions. Γ | E; L | T1 ` I a x.T2

S-true
Γ | E; L | ∅ ` true a x. x C bool

S-false
Γ | E; L | ∅ ` false a x. x C bool

S-nat-op
Γ | E; L | p1 C int, p2 C int ` p1 {+,−} p2 a x. x C int

S-deref-bor-own
Γ | E; L ` κ alive

Γ | E; L | p C &κµ ownn τ ` ∗p a x. x C &κµ τ

S-deref-bor-mut
Γ | E; L ` κ alive Γ | E; L ` κ v κ′

Γ | E; L | p C &κµ &κ
′

mut τ ` ∗p a x. x C &κµ τ

S-sum-assgn-unit
τ i = Π[] Γ | E; L ` τ1 (Στ τ ′1

Γ | E; L | p C τ1 ` p
inj i:== () a p C τ ′1

S-memcpy
size(τ) = n Γ | E; L ` τ1 (τ τ ′1 Γ | E; L ` τ2

(τ τ ′2

Γ | E; L | p1 C τ1, p2 C τ2 ` p1 :=n
∗p2 a p1 C τ

′
1, p2 C τ

′
2

S-sum-memcpy
size(τ) = n Γ | E; L ` τ1 (Στ τ ′1 Γ | E; L ` τ2

(τ τ ′2 τ i = τ

Γ | E; L | p1 C τ1, p2 C τ2 ` p1
inj i:==n

∗p2 a p1 C τ
′
1, p2 C τ

′
2

Finally, in terms of function bodies, F-if is rather unremarkable and
F-case-own is very similar to F-case-bor. F-equalize, on the other
hand, is interesting: it says that whenever we have a local lifetime α that
is a sublifetime of exactly one other lifetime κ, then we may “equalize”
(or “equate”) the two lifetimes: we can basically declare that α will last
as long as possible, which—since it is a sublifetime of κ—means it lasts
exactly as long as κ. Thus we obtain mutual lifetime inclusion between
α and κ, and we also lose α from the local lifetime context as we are no
longer in control of when this lifetime ends. This obscure rule is needed to
typecheck the “problem case #3” from an early blog post on non-lexical
lifetimes.35 A variant of non-lexical lifetimes has been implemented in

34 After all, we only exclusively
borrowed that inner reference for
the short lifetime, so after the
lifetime is over, other parties may
have access to it again. We thus
cannot claim exclusive access to
T for any longer than the outer
lifetime.

35 Matsakis, “Non-lexical lifetimes:
Introduction”, 2016 [Mat16b].

128

Part II: RustBelt Chapter 9: The λRust language and type system

Rust since the publication of that blog post, but problem case #3 still
gets rejected by current compilers. However, work is underway on a
third-generation borrow checker36 dubbed “Polonius”,37 and supporting
such code is one key design goal of Polonius.

Well-typed functions. Γ | E; L | K; T ` F

F-equalize
Γ | E, α ve κ, κ ve α; L | K; T ` F

Γ | E; L, α vl [κ] | K; T ` F

F-if
Γ | E; L | K; T ` F1 Γ | E; L | K; T ` F2

Γ | E; L | K; T, p C bool ` if p then F1 else F2

F-case-own
∀i. (Γ | E; L | K; T, p.0 C ownn , p.1 C ownn τ i, p.(1 + size(τ i)) C ownn (maxj size(τj))−size(τ i) ` Fi) ∨

(Γ | E; L | K; T, p C ownn Στ ` Fi)
Γ | E; L | K; T, p C ownn Στ ` case ∗p of F

36 The first two generations were the
naive scope-based checker that came
with Rust 1.0, and NLL (non-lexical
lifetimes).

37 Matsakis, “An alias-based formu-
lation of the borrow checker”, 2018
[Mat18].

129

Chapter 10

A semantic model of λRust types in Iris

Our proof of soundness of the λRust type system proceeds by defining a
logical relation, which interprets the types and typing judgments of λRust

as logical predicates in an appropriate semantic domain. We focus here on
the interpretation of types, leaving the interpretation of typing judgments
and the statements of our main soundness theorem to §12. First, we
give a simplified version of the semantic domain of types (§10.1). To
reason about λRust programs, we need an appropriate program logic; its
specificities are introduced in §10.2. Based on that, we give the semantic
interpretation of some representative λRust types (§10.3). Finally, in §10.4,
we focus on the interpretation of shared reference types. It turns out that
to account for them, we have to generalize the semantic domain of types.

10.1 A simplified semantic domain of types

The semantic domain of types answers the question “What is a type?”.
Usually, the answer is that a type denotes a set of values—or, equivalently,
a predicate over values. Fundamentally, this is also the case for λRust, but
the details are somewhat more complicated.

First of all, our model of the type system of λRust expresses types not as
predicates in “plain mathematics” (e.g., the usual higher-order logic), but
as predicates in Iris. Using Iris to express types has the advantage that
concepts like ownership are already built into the underlying framework, so
the model itself does not have to take care of them. We assume familiarity
with the features of Iris covered in Part I. Extra elements we need will be
introduced en passant, as needed.

Another source of complexity in our semantic model is that types are
not mere predicates over values: our interpretation of types associates
with every type τ an Iris predicate JτK.own ∈ TId × List(Val) → iProp.
This Iris-level predicate (as indicated by the iProp) takes two parameters:
the second parameter is the list of values we are considering. As discussed
in §9, types describe data that is laid out in memory and spans multiple
locations. However, we have to impose some restrictions on the lists
of values accepted by a type: we require that every type has a fixed
size JτK.size. This size is used to compute the layout of compound data
structures, e.g., for product types. We require that a type only accepts
lists whose length matches the size:

JτK.own(t, v) −∗ |v| = JτK.size (ty-size)

131

Part II: RustBelt Chapter 10: A semantic model of λRust types in Iris

Furthermore, for Copy types, we require that JτK.own(t, v) be persistent.1
The first parameter of the predicate (of type TId) permits types to

moreover depend on the thread identifier of the thread that claims own-
ership. This is used for types like &Cell that cannot be sent to another
thread. In other words, ownership is (in general) thread-relative. It turns
out that this enables a very natural way of modeling Send: semantically
speaking, a type τ is Send if JτK.own does not depend on the thread id.
This will be defined formally in §12.4, and in §13.1 we will see how Cell
makes crucial use of the thread identifier.

To summarize, the preliminary form of a semantic type JτK ∈ SemType
is described by the following record:

PreSemType :=
{

size : N,
own : TId× List(Val)→ iProp

}
SemType := {T ∈ PreSemType | ` ∀t, v. T.own(t, v) −∗ |v| = T.size}

10.2 Program logic

In order to use Iris for our semantic model of types, we need to instantiate
Iris for λRust. All of the proof rules in Figure 5.6 (page 75) can be used
without any issue, but λRust has slightly different reasoning principles
than HeapLang. The proof rules for arithmetic and other pure operations
in λRust are straightforward. However, λRust has recursive functions,2 for
which we need a suitable reasoning principle. Moreover, the memory of
λRust is somewhat different from the one in HeapLang, and thus also needs
dedicated proof rules.

Recursive functions. The proof rule hoare-rec for reasoning about
recursive functions is shown at the top of Figure 10.1. This rule says that
to verify rec f(x) := e applied to some arguments, it is sufficient to verify
the body of the function (with suitable substitutions applied) under the
assumption that all recursive calls (which will, after substitution, be calls
to rec f(x) := e) are already verified. Note that this recursive assumption
carries its own universal quantification over v, which is crucial to permit
recursive calls to use different arguments than the original call. The
precondition P can depend on v, and thus serves as a loop invariant.3
The entire assumption is wrapped in the persistence modality � to ensure
that the result of this verification can be applied as often as necessary.

hoare-rec can be derived using Löb induction,4 using the O-app
reduction step to strip off the later that arises as part of that induction.

Memory operations. The two key assertions that we will use to reason
about memory (taking the place of the standard points-to connective) are
`
q7−→ v and Dealloc(`, n,m), both of which are timeless.5 Their rules are

defined in Figure 10.1.
`
q7−→ v is a variant of the fractional points-to assertion that works with

lists of values. It states that, starting at location `, the next |v| many
locations in memory contain the values given by v, and asserts ownership
of fraction q of this memory region. We will use ` q7−→ v as sugar for a

1 Remember that an Iris proposition
is considered persistent if it does not
describe ownership of any exclusive
right or resource, and can therefore
be freely copied and shared among
several parties (§3.3).

2 Full HeapLang, as formalized
in Coq, also supports recursive
functions, but the simplified version
we used in Part I does not.

3 A weakest precondition version of
this rule would still require such a
loop invariant, making hoare-rec
one of the few proof rules that does
not actually become simpler when
using weakest preconditions instead
of Hoare triples.

4 Jung et al., “Iris from the ground
up: A modular foundation for
higher-order concurrent separation
logic”, 2018 [Jun+18b], §5.6.

5 As explained in §3.2, timeless
propositions can have a . removed
in front of them with vs-timeless.

132

Part II: RustBelt Chapter 10: A semantic model of λRust types in Iris

Proof rule for recursive functions.

hoare-rec
�
((
∀v. {P} (rec f(x) := e)(v) {w. Q}

)
−∗ ∀v. {P} e[rec f(x) := e/f, v/x] {w. Q}

)
∀v. {P} (rec f(x) := e)(v) {w. Q}

Primitive proof rules for memory operations.

lrust-heap-timeless
timeless(` q7−→ v)

lrust-dealloc-timeless
timeless(Dealloc(`, n,m))

lrust-heap-nil
True −∗ ` 7→ ε

lrust-heap-add
|v| = |v′|

`
q7−→ v ∗ ` q′

7−→ v′ ∗−∗ ` q+q′
7−−−→ v ∗ v = v′

lrust-heap-app
`
q7−→ v ∗ `.|v| q7−→ v′ ∗−∗ ` q7−→ v ++ v′

lrust-dealloc-null
True −∗ Dealloc(`, 0, 0)

lrust-dealloc-split
Dealloc(`, n,m) ∗ Dealloc(`.n, n′,m) ∗−∗ Dealloc(`, n+ n′,m)

lrust-alloc
n > 0

{True} alloc(n) {`. ∃v. ` 7→ v ∗ |v| = n ∗ Dealloc(`, n, n)}

lrust-free
|v| > 0

{` 7→ v ∗ Dealloc(`, |v|, |v|)} free(|v|, `) {True}

lrust-deref-ac
{` q7−→ v} ∗sc` {v′. v′ = v ∗ ` q7−→ v}

lrust-deref-na
{` q7−→ v} ∗na` {v′. v′ = v ∗ ` q7−→ v}

lrust-assign-sc
{` 7→ v} ` :=sc w {v′. v′ = () ∗ ` 7→ w}

lrust-assign-na
{` 7→ v} ` :=na w {v′. v′ = () ∗ ` 7→ w}

lrust-cas-int
{` 7→ n} CAS(`,m1,m2) {b. (b = true ∗ n = m1 ∗ ` 7→ m2) ∨ (b = false ∗ n 6= m1 ∗ ` 7→ n)}

Derived proof rules for memory operations.

lrust-new
{True} new(n) {`. ∃v. ` 7→ v ∗ |v| = n ∗ Dealloc(`, n, n)}

lrust-delete
{` 7→ v ∗ Dealloc(`, |v|, |v|)} delete(|v|, `) {True}

lrust-memcpy
|vs| = n |vd| = n

{`d 7→ |vd| ∗ `s q7−→ |vs|} memcpy(`d, n, `s) {`d 7→ |vs| ∗ `s q7−→ |vs|}

Figure 10.1: Program logic
proof rules for λRust.

133

Part II: RustBelt Chapter 10: A semantic model of λRust types in Iris

singleton list, and omit q when it is 1. This points-to assertion can be
split along two dimensions: we can reduce the fraction of ownership of
the entire region (lrust-heap-add),6 and we can split the block into
two pieces that we each own at the original fraction (lrust-heap-app)7.
Ownership of the empty list at some location is trivial (lrust-heap-nil).

Owning some memory asserts that all the owned locations are currently
unlocked, i.e., their lock state is reading 0. This lets us give entirely stan-
dard rules for both the atomic and non-atomic load and store operations
(lrust-deref-na, lrust-assign-sc et cetera). It may be surprising that
we, in fact, have the same rules for atomic (-sc) and non-atomic (-na)
accesses. In terms of reasoning, the only difference between the atomic
and the non-atomic operation is that the atomic ones are, well, physically
atomic, which lets us use rules like wp-fup-atomic and hoare-inv. We
can open invariants around atomic accesses, but not around non-atomic
accesses. This reflects that the difference between the two kinds of accesses
is not in how they behave when we have exclusive local ownership of this
memory; the difference is in how they behave when ownership is shared
and multiple threads are accessing the same location governed by some
protocol that is enforced by an invariant, and it is the invariant that owns
the memory. With non-atomic accesses, such coordination is simply not
possible as we cannot access locations that are owned by an invariant!

We show only the CAS rule for integers (note that lrust-cas-int is
restricted to integers n, m and does not work with arbitrary values v).
CAS is also possible for locations, but due to the non-deterministic nature
of location equality and how it depends on which locations are still
allocated in the heap (see Figure 9.3 on page 109), the rule gets more
complicated. For the examples we are considering in this dissertation,
integer CAS is sufficient.8

The assertion Dealloc(`, n,m) is only relevant for allocation and deallo-
cation of memory. It says that we own part of the right to deallocate a
block; namely, we own the right to deallocate the part of the block that
starts at ` and has size n. The entire size of the block is recorded in
m. lrust-dealloc-split can be used to take apart and assemble this
permission (similar to lrust-heap-app). Allocation initially provides the
permission for the entire block (lrust-alloc), and deallocation demands
that n = m to make sure that we are indeed deallocating an entire block
at once, and not just some part of it (lrust-free).

From these rules, we can easily derive rules for our derived opera-
tions new (lrust-new), delete (lrust-delete), and memcpy (lrust-
memcpy). The former have almost the same specification as alloc and
free, respectively, except that the side-condition n > 0 is gone. For
memcpy, we require ownership of two regions of memory of equal size,
but for the source region (that is only read), owning any fraction q is
sufficient. In the post-condition, both regions contain the values vs that
were originally in the source region.

6 Here, ∗−∗ is sugar for a two-way
magic wand:

P ∗−∗ Q := (P −∗ Q) ∧ (Q −∗ P)

This matches our Coq formalization:
we use implication only when nec-
essary, and magic wand otherwise
(similar to how we use conjunction
only when necessary and separating
conjunction otherwise). So far, it
turns out that implication is never
necessary.

7 Notice how the second points-to
on the left-hand side is offset by
exactly the size of the first.

8 The CAS rules for locations can
be found in the Coq development in
theories/lang/lifting.v.

134

Part II: RustBelt Chapter 10: A semantic model of λRust types in Iris

10.3 Interpreting types

Now that we have a semantic domain of types and a program logic for λRust,
we can define the semantic interpretation as a function from syntactic
types τ into the semantic domain.9 In this chapter, we focus on the most
representative types. The full interpretation can be found in §12.2.

Booleans. To get started, let us consider a very simple type: bool. It
should not come as a surprise that JboolK.size := 1. The semantic
predicate of a Boolean is defined as follows:

JboolK.own(t, v) := v = [true] ∨ v = [false] (bool-own)

In other words, a Boolean can only be a singleton list (which is already
expressed by its size), and that list has to contain either true or false.

Unsurprisingly, the semantic interpretation of integers is similar and
equally straightforward.

Products. Given two types τ1 and τ2, we define the semantics of their
binary product τ1×τ2 as that of the two types laid out one after the other
in memory. This definition can be iterated to yield the interpretation of
n-ary products.

For the size, we have Jτ1 × τ2K.size := Jτ1K.size + Jτ2K.size. The
semantic predicate associated with τ1 × τ2 uses separating conjunction
(P ∗ Q) to join the semantic predicates of both types. The separating
conjunction ensures that they describe ownership of disjoint resources that
can be used independently of each other. (Here, ++ is list concatenation.)

Jτ1 × τ2K.own(t, v) := ∃v1, v2. v = v1 ++ v2 ∗
Jτ1K.own(t, v1) ∗ Jτ2K.own(t, v2)

(pair-own)

Owned pointers. In order to give a semantic interpretation to the type
ownn τ of owned pointers, we use the points-to predicate introduced
in §10.2.10 With this ingredient, the interpretation is given by:

Jownn τK.size := 1
Jownn τK.own(t, v) := ∃`. v = [`] ∗ . ∃w. ` 7→ w ∗

JτK.own(t, w) ∗ Dealloc(`, JτK.size, n)
(own-ptr-own)

In other words, an owned pointer to τ is a single location ` which points
to some data w which has type τ .11 So far, so simple.

What is less simple is that we wrap this entire definition in a later
modality (., see §5.1). The reason we are doing this has to do with
recursive types: remember that in λRust, a recursive type is well-formed if
the recursive occurrence is below a pointer indirection (or function type).
This indicates that there is something special that the pointer types (and
function type) are doing that makes recursion “work”. The special thing
they do is that they only use the type variable τ below a later modality.
This lets us make use of a mechanism Iris provides to define predicates

9 With a more conventional seman-
tic domain such asVal → Prop,
this function would have a type like
Type → (Val → Prop). In other
words, the semantic interpretation
can often be equivalently viewed
as a relation between types and
values—hence the term “logical
relation”. With our more complex
domain though, the term makes
less sense. That is why we will just
speak of a semantic interpretation
here.

10 Remember that the n in ownn τ
is the size of the allocated block,
which may be larger than the size
of τ .

11 This is where we exploit the fact
that new, the wrapper around alloc
that also works for size 0, always
returns a location. If it returned an
integer instead (like 0), we would
have to account for that case in
own-ptr-own.

135

Part II: RustBelt Chapter 10: A semantic model of λRust types in Iris

by guarded recursion: guarded recursion means that a predicate can refer
to itself recursively, but only below a . modality. The use of a guard
ensures that the circular definition can be solved—regardless of whether
the recursive reference occurs positively, negatively, or both—using the
technique of “step-indexing”.12 By making sure that all pointer types
(and the function type) “guard” their type arguments, we can use guarded
recursion to define recursive types in λRust.

Of course, this comes with a price: in the type system proof, we now
have to get rid of this . in order to actually use the ownership behind the
pointer indirection. But that is fine, because actually dereferencing the
pointer performs a physical step of computation, which is exactly what
we need to strip a ..

The other oddity is the proposition Dealloc(`, JτK.size, n) in the se-
mantic predicate. As explained in §10.2, Dealloc expresses the right to
deallocate some block of memory: if n = JτK.size, we can satisfy the
preconditions of lrust-free, which is exactly what we will need for the
proof of S-delete. But in general, n can be bigger than JτK.size, which
indicates that we own only a part of the block of memory that this pointer
points to.

Mutable references. Mutable references, like owned pointers, are unique
pointers to something of type τ . The key difference is that mutable
references are borrowed, not owned, and hence they come with a lifetime
indicating when they expire. In standard separation logic, an assertion
always represents ownership of some part of the heap, for an unlimited
duration (or until the owner actively decides to give it to another party).
Instead, a mutable reference in Rust represents ownership for a limited
period of time. When this lifetime of the reference is over, a mutable
reference becomes useless, because the original owner gets back the full
ownership.

To handle this new notion of “ownership with an expiry date”, we
developed a custom logic for reasoning about lifetimes and borrowing. It
is called the lifetime logic. This logic is embedded and proven correct in
Iris, and we describe it in §11. Most importantly, for an Iris assertion P
and a lifetime κ, the lifetime logic defines an assertion &κfull P , called a
full borrow, representing ownership of P for the duration of lifetime κ.
Using full borrows, the interpretation of the type of mutable references is
as follows:

J&κmut τK.size := 1

J&κmut τK.own(t, v) := ∃`. v = [`] ∗&JκK
full
(
∃w. ` 7→ w ∗ JτK.own(t, w)

)
(mut-ref-own)

This is very similar to the interpretation of ownn τ , except that the
assertion describing ownership of the contents of the reference (∃w. ` 7→
w ∗ JτK.own(t, w)) is wrapped in a full borrow (at lifetime κ) instead of a
later modality ..13 The &JκK

full already functions as a guard for the purpose
of recursively defined predicates, so there is no need for us to add any
extra ..

12 Appel and McAllester, “An
indexed model of recursive types for
foundational proof-carrying code”,
2001 [AM01].

13 Also, there is no Dealloc because
mutable references cannot be used
to deallocate memory.

136

Part II: RustBelt Chapter 10: A semantic model of λRust types in Iris

10.4 Interpreting shared references

The interpretation of shared references &κshr τ requires more work than the
types we considered so far. Usually, we would proceed as we did above:
Define J&κshr τK.own based on JτK.own such that all the typing rules for
&κshr τ work out. Most of the time, this does not leave much room for
choice; the primitive operations available for the type almost define it
uniquely. This is decidedly not the case for shared references, for it turns
out that, in Rust, there are hardly any primitive operations on &T. The
only properties that hold for &T in general is that it can be created from
a &mut T (C-share), it is Copy, it has size 1, and its values have to be
memory locations. Moreover, if T is itself Copy, it becomes possible to
copy data out of an &T (Tread-bor).

A possible model that would explain all of this behavior is to say that
a shared reference points to borrowed read-only memory storing some
list of values w, and also w must satisfy JτK.own.14 This naive model
matches the intuition that Rust does not permit mutation of shared data.
However, as we have seen in §8.6, types like Cell or Mutex do provide
some mutating operations on shared references. If we adapt the read-only
interpretation of shared references, we will later be unable to verify that
these operations are safely encapsulated in unsafe code—under this model,
any mutation of shared references is violating fundamental type system
assumptions.

To be able to define a generally appropriate interpretation of shared
references, we permit every type to pick its own sharing predicate. We
then use the sharing predicate of τ to define J&κshr τK.own. This permits,
for every type, a different set of operations on its shared references. For
example, the sharing predicate for basic types like bool allows read-only
access for anyone, while the sharing predicate for Mutex<T> allows read
and write accesses to the underlying object of type T once the lock has
been acquired.

More formally, we extend the semantic domain of types and associate
with each of them another predicate JτK.shr ∈ Lft× TId×Loc→ iProp,
which we use to model shared references:

J&κshr τK.size := 1
J&κshr τK.own(t, v) :=∃`. v = [`] ∗ JτK.shr(JκK, t, `) (shr-ref-own)

The JτK.shr predicate takes three parameters: the lifetime κ of the shared
reference, the thread identifier t, and the location ` constituting the shared
reference itself. To support the aforementioned primitive operations on &T,
the sharing predicate has to satisfy the following properties:

persistent(JτK.shr(κ, t, `)) (ty-shr-persist)

&κfull
(
∃w. ` 7→ w ∗ JτK.own(t, w)

)
∗ [κ]q ≡−∗Nlft JτK.shr(κ, t, `) ∗ [κ]q

(ty-share)

κ′ v κ ∗ JτK.shr(κ, t, `) −∗ JτK.shr(κ′, t, `) (ty-shr-mono)

14 As we will see later in this section,
this is the model we use for “simple
types”.

137

Part II: RustBelt Chapter 10: A semantic model of λRust types in Iris

First, ty-shr-persist requires that JτK.shr be persistent, which im-
plies that J&κshr τK.own(t, v) is persistent. This corresponds to the fact
that, in Rust, shared references are always Copy.

Second, ty-share asserts that shared references can be created from
mutable references: This is the main ingredient for proving the rule
C-share of the type system. Looking at this rule more closely, its
first premise is a full borrow of an owned pointer to τ . This is exactly
J&κmut τK.own(t, [`]). Its second premise is a lifetime token [κ]q, which, as
we will explain in §11, witnesses that the lifetime is alive and permits
accessing borrows. Given these premises, ty-share states that we can
perform a view shift, denoted by the Iris connective ≡−∗.15 This view shift
will safely transform the resources described by the premises into those
described by the conclusion, namely τ ’s sharing predicate along with the
same lifetime token that was passed in. The mask Nlft (see §5) grants
access to the lifetime logic.

Third, ty-shr-mono requires that JτK.shr be monotone with respect
to the lifetime parameter. This is important for proving the subtyping
rule T-bor-lft.

The addition of the sharing predicate completes the semantic domain
of types, which now looks as follows:

PreSemType :=

size : N,
own : TId× List(Val)→ iProp,
shr : Lft× TId×Loc→ iProp

SemType :=

{
T ∈ PreSemType

∣∣∣∣∣ ty-size,ty-shr-persist,
ty-share,ty-shr-mono

}

Let us now go back to the types we already considered above and define
their sharing predicates.

Sharing predicate for products. The sharing predicate for products is
simply the separating conjunction of the sharing predicates of the two
components:

Jτ1 × τ2K.shr(κ, t, `) := Jτ1K.shr(κ, t, `) ∗ Jτ2K.shr(κ, t, `+ Jτ1K.size)

The location used for the second component is shifted by Jτ1K.size, re-
flecting the memory layout.

Sharing predicate for simple types. While the read-only definition of
shared references is not suitable in general, there are still many types
for which this is the right notion of sharing—types like integers and
Booleans. We thus introduce a notion of simple types that can be used as
a sharing predicate for any Copy type τ of size 1. All of these types have
an ownership predicate that can be written as follows:

JτK.own(t, v) = ∃v. v = [v] ∗ Φτ (t, v)

where Φτ is a persistent predicate specific to the individual type. For
example, Φbool(t, v) := v = true ∨ v = false. With this, we can define

15 The connective P ≡−∗ Q is just
a shorthand for P −∗ |VQ in Iris
(§5.5). We use the term view shift
both for V and ≡−∗, but will not
actually use the former connective
in this part of the dissertation, so
there should be no ambiguity.

138

Part II: RustBelt Chapter 10: A semantic model of λRust types in Iris

the sharing predicate uniformly as follows:

JτK.shr(κ, t, `) := ∃v. &κfrac(λq. `
q7−→ v) ∗ .Φτ (t, v)

This definition says that there exists a fixed value v (the current value
the reference points to, which cannot change) such that Φτ holds under
the later modality . (recall that shared references are pointers, and hence
occurrences of τ need to be guarded to enable construction of recursive
types), and that we have a fractured borrow &κfrac(λq. `

q7−→ v) of the
ownership of the memory cell.

Fractured borrows are another notion provided by the lifetime logic:
similar to full borrows, they represent temporary ownership of some
resource, limited by a given lifetime. The difference is that they are
persistent, but only grant some fraction of the content. Fortunately, that
is all that is needed in order to support a read of the shared reference.

The case of the missing .. It might come as a surprise that the ownership
predicate shr-ref-own of &κshr τ does not use a . to guard the use of
the sharing predicate of τ . Given what we explained above about how
all pointer types must be guarded to define the semantic interpretation
of recursive types, how can this be? The full answer is complicated, but
here is the high-level summary: it is okay for the ownership predicate of a
pointer-to-τ to use the sharing predicate of τ in an unguarded way, because
we are making sure that no sharing predicate of any type constructor16
(pointer or not) uses the ownership predicate of its type parameters in an
unguarded way. This makes sure that there is never an unguarded “cycle”
where ownership of &κshr τ is defined in terms of sharing of τ , which itself
is (recursively) defined in terms of ownership of &κshr τ—that last step
would always add a guard.

A useful intuition here is to think of this as mutual recursion. When
justifying the termination of mutual recursion with some notion of size, we
can “sort” the functions involved in the recursion with some well-formed
order such that “bigger” functions are permitted to call strictly “smaller”
functions with arguments that are of the same size—they just must not
become bigger. This is okay because we know that the “smaller” function
cannot recursively call the “bigger” one again without making the size
strictly smaller. As a consequence, the size decreases on every possible
cycle. If we carry this analogy to our domain of semantic types, then the
ownership predicate is “bigger” than the sharing predicate, so we permit
the ownership predicate to be defined in terms of the sharing predicate,
but not vice versa. This ensures (as we have proven in Coq) that shared
references do properly guard τ , and recursive types are well-defined.

16 Type constructors are type form-
ers that take a type as parameter,
like &κmut _ or _×_.

139

Chapter 11

Lifetime logic

In §10, we gave a semantic model for λRust types, but we left some
important notions undefined. In particular, we used the notion of a full
borrow &κfull P in the interpretation of mutable references to reflect that
this kind of ownership is temporary and will “expire” when lifetime κ
ends; we mentioned lifetime tokens [κ]q as a resource used to witness that
a lifetime is ongoing; and we employed fractured borrows &κfrac Φ in the
sharing predicate of simple types.

In this chapter, we describe the lifetime logic, a library we have de-
veloped in Iris to support these notions. We start by presenting the two
core notions of lifetimes and full borrows in §11.1. We then continue in
§11.2, explaining how lifetimes can be compared and intersected. In §11.3
and §11.4, we present fractured borrows and atomic borrows—two forms
of persistent borrowing that are useful for defining sharing predicates.
In §11.5, we explain that all forms of borrowing that we have seen so far
can, under the hood, be expressed in terms of the lower-level mechanism
of indexed borrows. Finally, in §11.6 and §11.7, we roughly sketch in two
stages how the lifetime logic and indexed borrows can be implemented
in Iris.

11.1 Full borrows and lifetime tokens

Figure 11.1 shows the main rules of the lifetime logic. We explain them
by referring to the following Rust example, similar to the one in §8.5:

1 let mut v = vec![10, 11]; v.push(12);
2 let vptr = v.index_mut(1);
3 *vptr = 23;
4 println!("{:?}", v);

Here, we desugared &mut v[1] to show the underlying method call
v.index_mut(1) in line 2. Similar to what we saw with push before,
that call in turn is sugar for Vec::index_mut(&mut v, 1). The type of
index_mut looks as follows:

for<’a> fn(&’a mut Vec<i32>, usize) -> &’a mut i32

To call this function, we thus need a borrow at some lifetime κ (which
we will use to instantiate ’a). To get started, we need to create this
lifetime. This is the role of LftL-begin: it lets us perform an Iris view
shift to create a fresh lifetime κ and gives us the full lifetime token [κ]1

141

Part II: RustBelt Chapter 11: Lifetime logic

Lifetime tokens (all primitive).

LftL-begin
True ≡−∗Nlft ∃κ. [κ]1 ∗

(
[κ]1 .≡−∗Nlft [†κ]

) LftL-tok-timeless
timeless([κ]q)

LftL-end-persist
persistent([†κ])

LftL-tok-fract
[κ]q+q′ ∗−∗ [κ]q ∗ [κ]q′

LftL-tok-inter
[κ u κ′]q ∗−∗ [κ]q ∗ [κ′]q

LftL-end-inter
[† κ u κ′] ∗−∗ [†κ] ∨ [†κ′]

LftL-tok-unit
True −∗ [ε]q

LftL-end-unit
[†ε] −∗ False

LftL-not-own-end
[κ]q ∗ [†κ] −∗ False

Lifetimes κ form a cancellable commutative monoid with operation u and unit ε.

Lifetime inclusion (all derived from the definition).

LftL-incl
κ v κ′ := �

((
∀q.
(
[κ]q ∝Nlft q′. [κ′]q′

))
∗
(
[†κ′] ≡−∗Nlft [†κ]

))
LftL-incl-refl
κ v κ

LftL-incl-trans
κ1 v κ2 ∗ κ2 v κ3 −∗ κ1 v κ3

LftL-incl-isect
κ u κ′ v κ

LftL-incl-glb
κ v κ′ ∗ κ v κ′′ −∗ κ v κ′ u κ′′

Full borrows (primitive; see Figure 11.8 for more primitive rules).

LftL-borrow
.P ≡−∗Nlft &

κ
full P ∗

(
[†κ] ≡−∗Nlft .P

) LftL-bor-split
&κfull(P ∗Q) ≡−∗Nlft &

κ
full P ∗&κfullQ

Full borrows (derived).

LftL-bor-acc
&κfull P ∗ [κ]q ∝Nlft .P

LftL-reborrow
κ′ v κ ∗&κfull P ≡−∗Nlft &

κ′

full P ∗
(
[†κ′] ≡−∗Nlft &

κ
full P

)
LftL-bor-exists

domain of x is inhabited
&κfull(∃x. P) ≡−∗Nlft ∃x. &

κ
full P

LftL-bor-shorten
κ′ v κ −∗ &κfull P −∗ &κ

′

full P

Figure 11.1: Selected primi-
tive and derived rules of the
lifetime logic.witnessing that this lifetime is ongoing. (This token can then be split into

fractional lifetime tokens [κ]q—see below.) It also provides the view shift
[κ]1 .≡−∗Nlft [†κ]: we will use this view shift later to end κ by exchanging
the full lifetime token [κ]1 for a dead token, written [†κ], indicating that κ
has ended.1

Once the lifetime has been created, we can borrow the vector v at the
lifetime κ in order to pass a borrowed reference to index_mut. This is
allowed by LftL-borrow, really the core rule of the lifetime logic:

.P ≡−∗ &κfull P︸ ︷︷ ︸
ownership during κ

∗
(
[†κ] ≡−∗ .P

)︸ ︷︷ ︸
ownership after κ

This rule splits ownership of a resource .P (in our example, the
vector v) into the separating conjunction of a full borrow &κfull P and an
inheritance [†κ] ≡−∗Nlft .P . The borrow grants access to P during the

1 Note that the ending view shift
is a “view shift that takes a step”
.≡−∗ rather than a normal view
shift ≡−∗. This is syntactic sugar
for −∗ |V . |V. As we will see in
§11.6, for technical reasons related
to step-indexing, we have to restrict
the view shift to be only used
when performing a physical step of
computation.

142

Part II: RustBelt Chapter 11: Lifetime logic

lifetime κ, while the inheritance allows us to retrieve ownership of .P
after κ has ended.2 In other words, LftL-borrow splits ownership in
time. The separating conjunction indicates that the two operands are
“disjoint”, which means we can safely transfer ownership of the borrow to
index_mut and keep ownership of the inheritance for ourselves to use later.
The unusual aspect of this is that we do not have disjointness in space
(e.g., in the memory), since both the borrow and the inheritance grant
access to the same resource. Instead, we have disjointness in time: the
lifetime κ is either ongoing or ended, so the borrow and the inheritance
are never useful at the same time.

It is not worth going into the actual implementation of index_mut here.
The relevant part is what index_mut does with respect to ownership.
First, the ownership of the memory used by the vector (“inside” the full
borrow) is split into two parts: (1) the ownership of the accessed vector
position, and (2) the ownership of the rest of the vector. Then, the rule
LftL-bor-split is used to split the full borrow into two full borrows
dedicated to each of these parts. The full borrow of part (1) is returned to
the caller; this matches the return type of index_mut. On the other hand,
the full borrow of part (2) is dropped.3 This means that the ownership of
the rest of the vector is effectively lost until the lifetime ends, at which
point it can be recovered using the inheritance. Supporting this pattern
of forgetting about some borrowed resources and recovering them using
the inheritance is a key feature of the lifetime logic.

The next step of our program is the write to *vptr in line 3. Recall that
the type of vptr is &mut i32, which represents ownership of a full borrow
of a single memory location. In order to perform this write, we need to
access this full borrow and get the resource it contains (in particular, the
points-to predicate ` 7→ v). This is what LftL-bor-acc does.4 If we give
it a full borrow &κfull P and a lifetime token [κ]q, witnessing that κ is alive,
then we get the resource P (later). Moreover, we also obtain the view
shift .P ≡−∗Nlft &

κ
full P ∗ [κ]q: this can be used when we are done with P ,

in order to reconstitute the full borrow and get back the lifetime token.
Notice that the view shifts we are using here are non-mask-changing,
which means we can keep the borrow open for as long as we want, not
just for an atomic instant. But if we ever want to get the lifetime token
back, we need to reconstitute (or “close”) the borrow eventually—and in
our proofs, we will always be forced to give back all the lifetime tokens
that we obtained. This can be seen, for example, in ty-share: a token is
provided as a premise to this view shift, but the same token must also be
returned again in the conclusion.

Finally, at the end of line 3 of our example, vptr is not needed any more
and it is time to end κ. To this end, we apply the view shift [κ]1 .≡−∗Nlft [†κ]
that we obtained when κ was created.5 In doing so, we have to give up the
lifetime token [κ]1 (ensuring that all borrows are closed again), but we get
back the dead token [†κ], which can be used to prove that κ has indeed
ended. Now that κ has ended, we can use our inheritance [†κ] ≡−∗Nlft .P

to get back the ownership of v before printing it in line 4. Note that
the dead token [†κ] is persistent (LftL-end-persist), so it can be used
multiple times—this expresses that once the lifetime has ended, it can

2 The later modality (.) is needed
here for the same reason as in
§5.1: to avoid unsoundness due
to impredicativity. And as before,
whenever P is timeless, we can
ignore the modality (|V-timeless).

3 We can do this because, as dis-
cussed in §6.2, Iris is an affine logic,
which means it is possible to give up
ownership of resources at any time.

4 This rule uses syntactic sugar for
symmetric accessors that we defined
in §5.6.

5 This involves stripping a later,
which we will do using wp-step
(page 75).

143

Part II: RustBelt Chapter 11: Lifetime logic

never be “un-ended”. We may have to use the token many times because
there could be many borrows (and thus many inheritances we wish to
use) at the same lifetime. Each inheritance, however, may of course be
used only once.

One important feature of the lifetime logic that this example does
not demonstrate is the parameter q of a lifetime token [κ]q, which is a
fraction. Lifetime tokens can always be split into smaller parts, in a
reversible fashion (LftL-tok-fract). This is needed when we want to
access several full borrows with the same lifetime at the same time, or to
witness that a lifetime is ongoing in several threads simultaneously. We
also use lifetime tokens to express that a lifetime cannot be both dead
and alive at the same time (LftL-not-own-end); we will see the use of
this principle in §11.3.

Besides LftL-bor-split, borrows also enjoy the structural rule LftL-
bor-exists, which lets us commute an existential quantifier “out” of
a borrow (assuming the domain of quantification is inhabited). This
basically “freezes” the witness x: in &κfull(∃x. P), we get a fresh x each
time we access the borrow and we can pick an arbitrary x as part of
closing the borrow; after using LftL-bor-split the witness x is fixed
and cannot be changed any more. (LftL-bor-split looks like it could be
invertible, and indeed it is; we will discuss its inverse LftL-bor-merge
in §11.5.)

11.2 Lifetime inclusion

In §8.5 and §9, we have seen that Rust relates lifetimes by lifetime inclusion.
This is used for subtyping (T-bor-lft) and reborrowing (C-reborrow).

With the lifetime logic, we need to define what it means for a lifetime
κ to be “included” in another κ′. The key property of lifetime inclusion
is that when the shorter κ is still alive, then so is the longer κ′. From the
perspective of lifetime tokens, this means that, given a token for κ, we
should be able to obtain a token for κ′. Conversely, given a dead token
for κ′, we should be able to obtain a dead token for κ, as well. This is
expressed in the definition of lifetime inclusion as follows:

κ v κ′ := �
((
∀q.
(
[κ]q ∝Nlft q′. [κ′]q′

))
∗
(
[†κ′] ≡−∗Nlft [†κ]

))
We use a variant of symmetric accessors with a binder, which are defined
as follows:

Q ∝E1 E2 x. P (x) := Q −∗ |VE1 E2
(
∃x. P (x) ∗ (P (x) −∗ |VE2 E1Q)

)
In other words, when applying the accessor, the client learns about some
witness x that is used in P . When using the closing view shift, x must
not have changed.

The first part of lifetime inclusion says that we can trade a fraction
of the token of κ for a potentially different fraction of the token of κ′.6
Since the accessor is symmetric, it also provides a way to revert this
trading to recover the original token of κ, so that no token is permanently
lost. Crucially, the entire fraction q′ has to be “given up” when trading
back; there is no way to keep some part of the token for κ′. The second

6 Note that the accessor is non-
mask-changing, so there is no
atomicity restriction to using it.

144

Part II: RustBelt Chapter 11: Lifetime logic

part of this definition is the analogue for dead tokens. Note that since
dead tokens are persistent, it is not necessary to provide a way to recover
the dead token that is passed in. The entire definition is wrapped in
Iris’s persistence modality � (§5.4) to make lifetime inclusion a persistent
assertion that can be reused as often as needed.

It is easy to show that lifetime inclusion is a preorder (LftL-incl-
refl, LftL-incl-trans). Inclusion can be used to shorten a full borrow
(LftL-bor-shorten): If a full borrow is valid for a long lifetime, then
it should also be valid for the shorter one. This rule justifies subtyping
based on lifetimes in λRust.

An even stronger use of lifetime inclusion is reborrowing, expressed
by LftL-reborrow. This rule is used to prove the reborrowing rule in
the type system, C-reborrow. Unlike shortening, reborrowing provides
an inheritance to regain the initial full borrow after the shorter lifetime
has ended.7 This may sound intuitively plausible, but turns out to be
extremely subtle. In fact, most of the complexity in the model of the
lifetime logic arises from reborrowing.

Lifetime intersection. Beyond having a preorder, lifetimes also have a
greatest lower bound: given two lifetimes κ and κ′, their intersection
κ u κ′ is the lifetime that ends whenever either of the operands ends
(LftL-incl-glb).8

Lifetime intersection is particularly useful to create a fresh lifetime that
is a sublifetime of some existing κ. We invoke the rule LftL-begin to
create an auxiliary lifetime α0, and then we use the intersection α := κuα0

as our new lifetime. By the rules of greatest lower bounds (LftL-incl-
isect), it follows that α v κ. In the type system, we use this in the
proof of F-newlft to create a new lifetime α that is shorter than all the
lifetimes in κ.

As we will see later, lifetime intersection also comes up when dealing
with “nested” borrows, i.e., borrows of borrows.

Intersection of lifetimes interacts well with lifetime tokens: a token
of the intersection is composed of tokens of both operands, at the same
fraction (LftL-tok-inter).9 In other words, the intersection is alive if
and only if both operands are alive. Similarly, the intersection has ended
if and only if either operand has ended (LftL-end-inter). These laws
let us do the token trading required by lifetime inclusion, showing that
intersection indeed is the greatest lower bound for v (LftL-incl-isect,
LftL-incl-glb).

Furthermore, intersection is commutative, associative and cancellative.
It also has a unit ε.10 This lifetime never ends (LftL-end-unit) and we
can freely obtain any fraction of the token for it (LftL-tok-unit).11 We
use ε to model the static lifetime of λRust, corresponding to ’static in
Rust.

11.3 Fractured borrows

Full borrows and lifetimes are powerful tools for modeling temporary
ownership in Iris, and we use them to define the semantic interpretation

7 Shortening can almost be derived
from reborrowing by dropping the
inheritance. However, shortening is
just a plain magic wand, whereas
reborrowing involves a view shift—
and some uses of shortening would
not work with that extra update
modality of the view shift in the
way. That is why we have both
rules.

8 The concrete definition of lifetime
intersection is an implementation
detail of the lifetime logic; we will
give it in §11.6. For now, it suffices
to say that lifetimes are treated
symbolically, and intersection
just tracks which symbols have
been intersected. In particular,
intersection is not idempotent.

9 One somewhat surprising con-
sequence of this property is that
κ u κ 6= κ. Making intersection
idempotent is incompatible with
LftL-tok-inter.

10 ε is also a “top” element w.r.t. in-
clusion.

11 Note that q := 1 is a possible
choice. We can even get more than
fraction 1 of the token. This is why
we have no rule that [κ]q implies
q ≤ 1.

145

Part II: RustBelt Chapter 11: Lifetime logic

LftL-bor-fracture
&κfull Φ(1) ≡−∗Nlft &

κ
frac Φ

LftL-fract-shorten
κ′ v κ

&κfrac Φ −∗ &κ
′

frac Φ

LftL-fract-persist
persistent(&κfrac Φ)

LftL-fract-acc
�∀q1, q2. Φ(q1 + q2) ∗−∗ Φ(q1) ∗ Φ(q2)
&κfrac Φ −∗

(
[κ]q ∝Nlft q′. . Φ(q′)

) LftL-fract-acc-atomic
&κfrac Φ −∗

(
True ∝Nlft ∅ b, q. ifthenelse(b, . Φ(q), [†κ])

)
Figure 11.2: Proof rules for
fractured borrows (all de-
rived).of mutable references in λRust. However, they cannot be used as-is for

modeling Rust’s shared references. In §10.4, we used the notion of
fractured borrows as a key ingredient for defining the default read-only
sharing predicate. Figure 11.2 gives the main reasoning rules for fractured
borrows.12

The key point of fractured borrows is that they are persistent, and thus
can be shared between many parties. This ability comes at the cost of a
weaker accessor: while full borrows grant access to their entire content
(LftL-bor-acc), a fractured borrow only provides access to some fraction
of its content (LftL-fract-acc). To express this, fractured borrows
&κfrac Φ work on a predicate Φ over fractions that has to be compatible
with addition: Φ(q1 + q2) ∗−∗ Φ(q1) ∗Φ(q2).13 The rule consumes &κfrac Φ to
create the accessor, so that resource is not given back by the accessor—but
that would be unnecessary since &κfrac Φ is persistent, so it can be used any
number of times. When using LftL-fract-acc to access the content of
the fractured borrow, we get Φ(q′) for some unknown fraction q′. This
works because no matter how many threads access the same fractured
borrow at the same time, it is always possible to give out some tiny fraction
of Φ and keep some remainder available for the next thread. Similarly to
full borrows, LftL-fract-acc requires a lifetime token for witnessing
that the lifetime is alive, and gives back the lifetime token only when the
resource is returned. And again the accessor is non-mask-changing, so the
borrow can be kept open for an extended, non-atomic period of time.

The persistence of fractured borrows is required for their use as a
sharing predicate (ty-shr-persist). We also need a lifetime shortening
rule (LftL-fract-shorten) for ty-shr-mono. To create fractured
borrows in the first place, LftL-bor-fracture can turn a full borrow
into a fractured one.14 This rule is used to prove ty-share.

Dynamic lifetime inclusion. Fractured borrows have an interesting in-
teraction with lifetime inclusion. Assume we have a fractured borrow
with lifetime κ of a lifetime token for another lifetime κ′. That is, assume
Φ(1) = [κ′]q. For Φ to be suitably compatible with addition, we define
Φ(q′) = [κ′]q′·q: owning the full fraction of this borrow means owning
fraction q of the token; smaller fractions of the borrow are obtained via
multiplication. Then we can derive κ v κ′:

LftL-incl-fract(
&κfrac λq′. [κ′]q′·q

)
−∗ κ v κ′

12 Inference rules with Iris proposi-
tions above and below the bar are
to be interpreted as Iris entailment,
or (equivalently) a magic wand.

13 The compatibility of addition is
wrapped in the persistence modality
� (§5.4) to make sure we can apply
that property multiple times.

14 That rule looks pretty uni-
directional, but remember that
we can reborrow: by using LftL-
reborrow before applying LftL-
bor-fracture, we can fracture a
full borrow for some lifetime and
then re-gain full access once that
lifetime has ended.

146

Part II: RustBelt Chapter 11: Lifetime logic

The reason this principle intuitively makes sense is that with the token of
lifetime κ′ being borrowed at κ, it is impossible to end κ′ while κ is still
ongoing: ending κ′ needs the full token, but part of that token is stuck in
κ and can only be recovered through an inheritance once κ has ended.

To prove LftL-incl-fract, we first consider the left conjunct of
lifetime inclusion:(

&κfrac λq′. [κ′]q′·q
)
−∗ ∀q.

(
[κ]q ∝Nlft q′′. [κ′]q′′

)
This unfolds to:(

&κfrac λq′. [κ′]q′·q
)
−∗ ∀q. [κ]q ≡−∗Nlft ∃q′′. [κ′]q′′ ∗

(
[κ′]q′′ ≡−∗Nlft [κ]q

)
This is almost equivalent to LftL-fract-acc. Starting with fraction q
of the token for κ, we obtain some q′ such that . [κ′]q′·q ∗

(
. [κ′]q′·q ≡−∗Nlft

[κ]q
)
. With q′′ := q′ · q, that is exactly what we want to prove, modulo

some .. And since lifetime tokens are timeless, the . make no difference
(|V-timeless, .-intro) and we are done.

This completes one half of the proof for LftL-incl-fract. What
is missing is a way to turn a dead token for κ′ into a dead token for κ.
This mechanism is provided by LftL-fract-acc-atomic. The key
differences to LftL-fract-acc are that (a) it does not require a lifetime
token, and (b) it is mask-changing, and thus can only be used atomically.
Conceptually, this rule performs a case distinction: at the atomic instant
where the rule is used, either the lifetime is still ongoing (and thus the
accessor can provide atomic access to some fraction of the borrow), or else
we have a proof that the lifetime has ended (a dead token). The Boolean
b ∈ B records which of these cases applies.15 Here, ifthenelse is defined as
follows:

ifthenelse(b, x, y) :=

x if b = 1 (i.e., b is “true”)
y otherwise

Now we can complete the proof of LftL-incl-fract by showing:(
&κfrac λq′. [κ′]q′·q

)
−∗ [†κ′] ≡−∗Nlft [†κ]

Using LftL-fract-acc-atomic, we can distinguish two cases: either we
obtain a dead token for κ, so we are done.16 Or else we obtain .Φ(q′′),
which in our case means we obtain some fraction (q′′ · q) of the token for
κ′. But we also have a dead token for κ′, so by LftL-not-own-end, we
have a contradiction.17

Deriving lifetime inclusions from fractured borrows significantly ex-
pands the power of lifetime inclusion. So far, we have seen that we can
use lifetime intersection to make a fresh α a sublifetime of some existing
κ; however, for this to work out, we have to decide in advance which other
lifetimes α is going to be a sublifetime of. Using fractured borrows, we
can establish additional lifetime inclusions dynamically by borrowing one
lifetime’s token at another lifetime, when the involved lifetimes are already
ongoing and in active use. Some interior mutable types like RefCell<T>
or RwLock<T> allow sharing data structures for a lifetime that cannot be
established in advance, and we thus found this scheme for proving lifetime
inclusion dynamically crucial in proving the safety of such types.

15 It may seem like we could equiv-
alently use a disjunction, but that
is not the case: remember that
the right-hand side of an accessor
describes both the resources that
the accessor provides to its client,
and the resources that the client
gives back (in §5.6, these are P1
and P2, respectively). A disjunction
would permit the client to use a
different disjunct when closing the
accessor than what was used when
opening it. The use of an explicit
Boolean here prevents the client
from opening the accessor with
the left disjunct (.Φ(q)) and later
closing it with the right one ([†κ]),
or vice versa.

16 The token is persistent, so we can
keep it when closing the borrow.

17 This exploits that lifetime tokens
are timeless, so we can get rid of the
later.

147

Part II: RustBelt Chapter 11: Lifetime logic

LftL-bor-at
N # Nlft ∗&κfull P ≡−∗Nlft &

κ/N
at P

LftL-at-shorten
κ′ v κ

&κ/Nat P −∗ &κ
′/N

at P

LftL-at-persist
persistent(&κ/Nat P)

LftL-at-acc-tok
&κ/Nat P −∗

(
[κ]q ∝Nlft,N Nlft .P

)
Figure 11.3: Proof rules for
atomic borrows (all derived).

11.4 Atomic borrows

In the previous section, we have seen a form of borrowing that is persistent,
but only provides access to some fraction of the borrowed resources. Next
we will consider atomic borrows, which combine the persistence of fractured
borrows with full access to the borrowed resources like full borrows. But
of course, there is a catch: atomic borrows can only be accessed for a
single atomic instant; it is not possible to keep them open for an extended
duration. In that sense, atomic borrows are very similar to invariants,
except that they are integrated into the lifetime logic.18 And indeed,
the main use-case for atomic borrows is in the verification of Rust types
like Mutex<T> or RwLock<T>: concurrent synchronization primitives that
would usually be verified with an invariant governing the shared state. As
we will see in §13.2, the invariant gets replaced by an atomic borrow.

The basic rules for atomic borrows are given in Figure 11.3. Similar
to invariants P

N , atomic borrows &κ/Nat P come with a namespace N
that is used to ensure that an atomic borrow cannot be opened twice
(i.e., this avoids reentrancy). They can be created from full borrows via
LftL-bor-at, and are subject to lifetime inclusion as usual (LftL-at-
shorten). The accessor LftL-at-acc-tok says that given some fraction
of the lifetime token, we have access to the full content .P of the borrow,
but in so doing we have to remove N from our mask—this ensures that
the accessor has to be closed again within the same atomic instant.19

11.5 Indexed borrows: Unifying persistent borrowing

We have discussed two different forms of persistent borrows (fractured and
atomic borrows). In the next chapter, we will even introduce a third form
of persistent borrows called non-atomic borrows (§12.3). It would be quite
unsatisfying if all of these would be “primitive” in the sense that their
correctness is justified by direct appeal to the underlying model of borrows
in Iris. Instead, following the usual Iris approach, we would much rather
have a minimal “(base) lifetime logic” from which more advanced forms
of borrowing can be derived. This leads to several layers of abstraction
built on top of each other, as shown in Figure 11.4. The core lifetime logic
consists of lifetime tokens, lifetime inclusion, full borrows and indexed
borrows which we introduce in this section. As we will see next, the other

18 In fact, they are even more
similar to cancellable invariants
(§5.2), but with cancellation being
controlled by a lifetime instead of a
token per invariant. The use-cases
for cancellable invariants and the
various forms of borrowing in the
lifetime logic are very similar: in
both cases, some resources are
temporarily shared, but eventually
full ownership of the resources
needs to be reclaimed. The lifetime
logic is like cancellable invariants
“on steroids”.

19 The mask Nlft,N indicates the
disjoint union of Nlft and N .

148

Part II: RustBelt Chapter 11: Lifetime logic

forms of borrowing are built on top of that core. Furthermore, in §11.6
we will see that the lifetime logic itself rests on yet another abstraction
dubbed “boxes”.

Fractured Borrows
(Figure 11.2)

Atomic Borrows
(Figure 11.3)

Non-atomic Borrows
(Figure 12.7)

Lifetime Logic
(Figure 11.1, Figure 11.8: tokens, inclusion, and full borrows;

Figure 11.5: indexed borrows)

Boxes (Figure 11.11)

Figure 11.4: Lifetime logic
abstractions.

The key to establishing derived borrowing principles such as fractured
borrows and atomic borrows is to put the borrow into an Iris invariant.
This lets us share one borrow amongst everyone with access to the frac-
tured/atomic borrow, and make sure they all follow a common protocol.
The problem with this approach, as we saw in §5.1, is that putting a
borrow into an invariant means we have to add a . modality in front of
the borrow. Borrows are not timeless,20 so this extra modality prevents
us from using any of the lifetime logic proof rules.

Thus, the plan is to introduce a mechanism that lets us put borrows
into invariants without having to pay tribute to step-indexing by adding
a . modality. The lifetime logic achieves this using indexed borrows.21

An indexed borrow can be used to split a full borrow &κfull P into a
timeless token [Bor : i]1 and a persistent proposition &κi P (LftL-bor-
idx). The index i is used to tie the two pieces together. By putting
the timeless part into an invariant and keeping the persistent part “next
to” the invariant (it is persistent, so can be shared amongst all relevant
parties just like the invariant itself), we can effectively share access to a
full borrow without a . modality being added.22

Intuitively, &κi P says that P is or was a borrowed proposition at
lifetime κ with index i. The token [Bor : i]1 expresses ownership of
said borrow, which also ensures that the borrow still exists (and has not
been, for example, split using LftL-bor-split). The token comes with a
fraction, but the only rule that lets us do anything with partial ownership
of the token is LftL-idx-acc-atomic (which is needed to derive LftL-
fract-acc-atomic). Indexed borrows are subject to shortening as usual
(LftL-idx-shorten), and they can be accessed non-atomically like full
borrows (LftL-idx-acc). Furthermore, if P and Q are equivalent, then
a borrow of P is equivalent to a borrow of Q (LftL-idx-iff).23

To explain the more obscure proof rules for indexed borrows, we will
look at how to define atomic and fractured borrows in terms of lifetime
logic primitives (indexed borrows and lifetime tokens). We will also see
how LftL-reborrow follows from LftL-idx-bor-unnest.

20 Higher-order ghost state (§6.1)
is needed internally to define full
borrows. This makes them non-
timeless.

21 It turns out that same mecha-
nism can also be used to derive
LftL-reborrow from lower-level
reasoning principles—this is because
reborrowing is closely related to
dealing with “nested” borrows, and
putting a borrow into a borrow in-
curs the same .-related problems as
putting a borrow into an invariant.

22 Or rather, timelessness allows us
to use |V-timeless to remove the
modality again.

23 We demand the equivalence under
the persistence modality to ensure
that the equivalence proof itself
does not consume any resources.
Also, it is sufficient to prove them
“later” equivalent, which will be
crucial for subtyping in λRust.

149

Part II: RustBelt Chapter 11: Lifetime logic

LftL-bor-idx
&κfull P ∗−∗ ∃i. &κi P ∗ [Bor : i]1

LftL-idx-persist
persistent(&κi P)

LftL-idx-timeless
timeless([Bor : i]q)

LftL-idx-iff
.�(P ∗−∗ Q)
&κi P −∗ &κi Q

LftL-idx-shorten
κ′ v κ

&κi P −∗ &κ
′

i P

LftL-idx-fract
[Bor : i]q+q′ ∗−∗ [Bor : i]q ∗ [Bor : i]q′

LftL-idx-acc
&κi P −∗

(
[Bor : i]1 ∗ [κ]q ∝Nlft .P

)
LftL-idx-acc-atomic
&κi P −∗

(
[Bor : i]q ∝Nlft ∅ b. ifthenelse(b, . P, [†κ])

) LftL-idx-bor-unnest
&κi P ∗&κ

′

full([Bor : i]1) ≡−∗Nlft &
κuκ′

full P

Figure 11.5: Proof rules for in-
dexed borrows (all primitive).

11.5.1 Atomic borrows

In order to derive the proof rules in Figure 11.3, we define atomic borrows
as follows:

&κ/Nat P := ∃i. (N # Nlft) ∗&κi P ∗ [Bor : i]1
N (at-bor)

In other words, an atomic borrow simply puts the full borrow token into
an invariant. The indexed borrow is kept separately, together with a proof
that N and Nlft are disjoint. With this, LftL-at-persist is immediate.
Turning a full borrow into an atomic borrow (LftL-bor-at) follows
directly from LftL-bor-idx and creating an invariant to put the borrow
token into. LftL-at-shorten is a consequence of LftL-idx-shorten.

The only really interesting rule is LftL-at-acc-tok, and it is not
very hard to derive either. We show a proof outline in Figure 11.6.24 We
unfold the symmetric accessor, revealing our full goal:

&κ/Nat P ∗ [κ]q ≡−∗Nlft,N Nlft .P ∗
(
.P ≡−∗Nlft Nlft,N [κ]q ∗&

κ/N
at P

)
After introducing our assumptions and unfolding the atomic borrow, we
open the invariant in N . That gives us full access to the (timeless) borrow
token. Next, we apply LftL-idx-acc.25 Here we exploit that N # Nlft:
we can still use proof rules of the lifetime logic even though we have the
invariant in N already open. With this, we obtain .P , so we can prove
the first separating conjunct after the view shift.

We can use all our remaining resources for the second conjunct, so our
context consists of the two closing view shifts (for the invariant and the
borrow), and the goal is:

.P ≡−∗Nlft Nlft,N [κ]q ∗&
κ/N
at P

We start by adding .P to our context (bringing us back to the same
context as before), after which we first close the borrow and then close
the invariant. This completes the proof.

24 The way to read these proof
outlines is as follows: between
curly braces and in green, we show
the current context. The orange
resources are persistent and remain
implicitly available throughout the
rest of the outline without being
repeated everywhere. We also use
orange text when referring back to
them.
Most steps only change the

context, in which case we only show
how the context keeps evolving—
until the goal becomes relevant,
at which point we explicitly state
it. This is the current goal for
all contexts shown above, so to
determine the goal at some point
in the proof, look down below the
current context to the next Goal
statement.
We use numbered abbreviations to

avoid repeating the same terms over
and over; those abbreviations are
introduced by the bold numbers and
refer to the formula immediately
following that number.

25 Note that we could not use LftL-
idx-acc-atomic as that would
remove Nlft from our mask, but
we have to keep those invariants
enabled.

150

Part II: RustBelt Chapter 11: Lifetime logic

{
[κ]q ∗&

κ/N
at P

}
Nlft,N{

[κ]q ∗ N # Nlft ∗&κi P ∗ [Bor : i]1
N}
Nlft,N

Open invariant (inv-acc) in N , get closing view shift: (1) . [Bor : i]1 ≡−∗Nlft Nlft,N True.
Due to N # Nlft, we know that Nlft remains in the mask.{

[κ]q ∗ [Bor : i]1 ∗ (1)
}
Nlft

Use LftL-idx-acc with &κi P , get closing view shift: (2) .P ≡−∗Nlft [Bor : i]1 ∗ [κ]q.
{.P ∗ (1) ∗ (2)}Nlft

Goal: |VNlft,N Nlft
(
.P ∗

(
.P ≡−∗Nlft Nlft,N [κ]q

))
Introduce update modality, and discharge first separating conjunct.
{(1) ∗ (2)} (No mask because our goal does not start with a fancy update modality.)
Goal: .P ≡−∗Nlft Nlft,N [κ]q
Introduce assumption of magic wand.
{(1) ∗ (2) ∗ .P}Nlft

Use (2).{
(1) ∗ [Bor : i]1 ∗ [κ]q

}
Nlft

Use (1).{
[κ]q
}
Nlft,N

Goal: |VNlft Nlft,N [κ]q
Figure 11.6: Proof outline for
LftL-at-acc-tok.11.5.2 Fractured borrows

The goal is to derive the proof rules in Figure 11.2 (page 146). Ownership
of a fractured borrow is defined roughly as follows:26

&κfrac Φ := ∃κ′, γ, i. κ v κ′ ∗ ∃qi. [Bor : i]qi
Nlft ∗&κ

′

i IΦ(κ′)

IΦ(κ′) := ∃q. Φ(q) ∗ q γ ∗ (q = 1 ∨ [κ′]1−q)

First of all, the actual lifetime of the borrow is some κ′ that includes κ.
This is used to justify LftL-fract-shorten.27 Beyond this, we quantify
over the index i of the underlying borrow, and the ghost name γ of a
fractional token. This token named γ is not to be confused with the
borrow token; in fact, fractured borrows have to handle three kinds of
tokens: borrow tokens [Bor : i]q, lifetime tokens [κ]q, and their own
custom tokens q

γ . This custom token is needed to avoid having to
require Φ(q) −∗ q ≤ 1 in LftL-fract-acc.

The two key ingredients of a fractured borrow are:

• an invariant that always contains some fraction of the token for our
borrow. We can thus always open the invariant, take out some part of
what is in there, and put back the rest. This gives rise to the following
lemma:

� |VNlft
∃qi. [Bor : i]qi (frac-bor-tok)

Intuitively, the invariant serves as a “dispenser” where we can always
get some fraction of the token.28 This also means that it will be
impossible to ever recover full ownership of that token again, but that
is okay—we will never need more than a fraction of it.

26 The actual definition is slightly
different: fractured borrows are
really defined in terms of atomic
borrows. However, after inlining the
definition of atomic borrows, the
result is equivalent to what we have
given here. Also note that [κ′]1−q
implicitly assumes that 1 − q is
positive and thus q < 1.

27 Such a down-closure is a standard
technique for achieving monotonic-
ity. It was not needed for atomic
borrows as they do not use κ in
an invariant position (the lifetime
token).

28 In other words, ∃qi. [Bor : i]qi
is almost persistent, except that
we have to eliminate an update
modality every time we need some
more of the token.

151

Part II: RustBelt Chapter 11: Lifetime logic

• a borrow of some fraction q of Φ together with the same fraction of our
custom token. On top of that, the borrow also contains fraction 1− q
of the lifetime token.29 This setup implies that the sum of the fraction
of the lifetime token that we own ([κ′]1−q), and of the fraction that we
own of our own custom token and borrowed proposition (q γ ∗ Φ(q)),
is always 1. This is crucial when accessing the borrow to take out some
fraction of Φ, as it means we can “trade” these different tokens against
each other. Assuming �∀q1, q2. Φ(q1 + q2) ∗−∗ Φ(q1) ∗ Φ(q2), we have:

IΦ(κ′) ∗ q γ ∗ Φ(q) −∗ IΦ(κ′) ∗ [κ′]q (frac-bor-trade1)

IΦ(κ′) ∗ [κ′]q −∗ IΦ(κ′) ∗ ∃q0. [κ′]q−q0
∗ q0

γ ∗ Φ(q0)
(frac-bor-trade2)

Notice how I stays unchanged, and otherwise we swap fraction q of
one resource against the same fraction of something else. The second
rule is a bit more complicated because we have to ensure that there is
always some fraction of Φ left in I, so we only convert some unknown
fraction q0 of the lifetime token, and keep the rest.30

Both of these pieces (and lifetime inclusion) are persistent, giving rise to
LftL-fract-persist.

Let us now look at how one would prove LftL-fract-acc. The proof
outline is shown in Figure 11.7. After unfolding the accessor notation our
goal is:31

&κfrac Φ ∗ [κ]qκ ≡−∗Nlft ∃q0. . Φ(q0) ∗
(
.Φ(q0) ≡−∗Nlft [κ]qκ

)
(frac-acc)

Unfolding the fractured borrow reveals the actual lifetime κ′ of the borrow.
We also obtain κ v κ′, which (by the definition of lifetime inclusion) means
we can trade our κ token against some fraction qκ′ of κ′. The first main
step of the proof is now described by the following lemma:

[κ′]qκ′ ∗ ∃qi. [Bor : i]qi
Nlft ∗&κi IΦ(κ′) ≡−∗Nlft

∃qi, q0. [κ′]qκ′−q0
∗ [Bor : i]qi ∗ .Φ(q0) ∗ q0

γ

Using the invariant (via frac-bor-tok), we can get hold of some frac-
tion qi of the borrow token. Then we open the indexed borrow. We
cannot use LftL-idx-acc as that would require full ownership of the
borrow token where we just own fraction qi, so instead we use LftL-idx-
acc-atomic.32 This rule works without a lifetime token and either grants
access to the borrowed resources, or else provides a dead token for the
lifetime (similar to LftL-fract-acc-atomic). Since we actually own a
lifetime token, we can exclude the second case using LftL-not-own-end
to obtain a contradiction. Thus we obtain the content of the borrow (and
a view shift to close the accessor again, not shown below):

[κ′]qκ′ ∗ [Bor : i]qi ∗ . IΦ(κ′)

Now we perform token trading using frac-bor-trade2: some fraction q0

is subtracted from the lifetime token, and we obtain an equal fraction of

29 Since 0 is not a valid fraction for
tokens, we have to handle q = 1,
where we do not own any part of
the lifetime token, separately.

30 Specifically, the proof of this
lemma uses q0 := min(q, q′)/2 where
q′ is the existentially quantified
fraction in I. This is definitely
smaller than q, so q − q0 is positive,
and definitely smaller than q′, so
some fraction of Φ is left.

31 We freely use (un)currying
when needed. In this case the
goal literally unfolds to &κfrac Φ −∗
[κ]qκ ≡−∗Nlft . . ., and we uncurried
it to the form shown on the left.

32 We anyway have no intention of
keeping the borrow open for more
than an instant.

152

Part II: RustBelt Chapter 11: Lifetime logic

{(
(1) �∀q1, q2. Φ(q1 + q2) ∗−∗ Φ(q1) ∗ Φ(q2)

)
∗ [κ]qκ ∗&

κ
frac Φ

}
Nlft{

[κ]qκ ∗ κ v κ
′ ∗ ∃qi. [Bor : i]qi

Nlft ∗&κi IΦ(κ′)
}
Nlft

Use frac-bor-tok. Use LftL-incl with κ v κ′, get closing view shift: (2) [κ′]qκ′ ≡−∗Nlft [κ]qκ .{
[κ′]qκ′ ∗ [Bor : i]qi ∗ (2)

}
Nlft

Use LftL-idx-acc-atomic on &κi IΦ(κ′); with [κ′]qκ′ we can exclude the dead case.
The tokens are timeless. Get closing view shift: (3) . IΦ(κ′) ≡−∗∅ Nlft [Bor : i]qi .{

[κ′]qκ′ ∗ . IΦ(κ′) ∗ (2) ∗ (3)
}
∅

Use frac-bor-trade2 under . modality (.-mono) with q := qκ′ (needs (1)).{
[κ′]qκ′−q0

∗ . IΦ(κ′) ∗ .Φ(q0) ∗ q0
γ ∗ (2) ∗ (3)

}
∅

Use (3).{
[κ′]qκ′−q0

∗ [Bor : i]qi ∗ .Φ(q0) ∗ q0
γ ∗ (2)

}
Nlft

Goal: |VNlft

(
∃q0. . Φ(q0) ∗

(
.Φ(q0) ≡−∗Nlft [κ]qκ

))
Introduce update modality, and discharge first separating conjunct.{

[κ′]qκ′−q0
∗ [Bor : i]qi ∗ q0

γ ∗ (2)
}

Goal: .Φ(q0) ≡−∗Nlft [κ]qκ
Introduce assumption of magic wand.{

[κ′]qκ′−q0
∗ [Bor : i]qi ∗ q0

γ ∗ (2) ∗ .Φ(q0)
}
Nlft

Use LftL-idx-acc-atomic on &κi IΦ(κ′) (excluding dead case),
get closing view shift: (4) . IΦ(κ′) ≡−∗∅ Nlft [Bor : i]qi .{

[κ′]qκ′−q0
∗ q0

γ ∗ (2) ∗ .Φ(q0) ∗ . IΦ(κ′) ∗ (4)
}
∅

Use frac-bor-trade1 under . modality (.-mono) with q := q0 (needs (1)).{
[κ′]qκ′−q0

∗ . IΦ(κ′) ∗ [κ′]q0
∗ (2) ∗ (4)

}
∅

Use (4).{
[κ′]qκ′ ∗ (2) ∗ [Bor : i]qi

}
Nlft

Use (2).{
[κ]qκ ∗ [Bor : i]qi

}
Nlft

Goal: |VNlft
[κ]qκ

Figure 11.7: LftL-fract-acc
proof outline.

Φ and the custom token. (.-mono says we can apply frac-bor-trade2
under a ., but then we get the result under a . as well. All the tokens
are timeless so we can strip the . in front of them immediately.) Then we
can close the borrow again, which completes the proof of the lemma.

This completes the opening phase of LftL-fract-acc: we have
successfully obtained ownership of some fraction (q0) of .Φ, so we can
discharge the first separating conjunct of our goal in frac-acc.

The second conjunct, the view shift, is basically the inverse of the first.
We have to prove that we can close everything up again:

[κ′]qκ′−q0
∗ [Bor : i]qi ∗&

κ
i IΦ(κ′) ∗ .Φ(q0) ∗ q0

γ ≡−∗Nlft [κ′]qκ′

This suffices because [κ′]qκ′ is what we got by using the lifetime inclusion
κ v κ′, so the closing part of the lifetime inclusion accessor can be used
to turn that back into [κ′]qκ , which is all we need for frac-acc.

153

Part II: RustBelt Chapter 11: Lifetime logic

To prove this second main step, we use LftL-idx-acc-atomic again.
Since we still own some fraction of the lifetime token for κ′, we can again
exclude the case where the lifetime has already ended. We also own
fraction q0 of both .Φ and our custom token, hence we can put those into
the borrow, obtaining [κ′]q0

in the trade (frac-bor-trade1). Together
with the fraction qκ′ − q0 of that token that we still own, this completes
the proof of LftL-fract-acc.33

The proof of LftL-fract-acc-atomic is simpler; it just requires a single
application of LftL-idx-acc-atomic—no need to trade back and forth
with the tokens inside the borrow. The fractured borrow always contains
some fraction of Φ, so we can always give the client direct access to that.

Finally, we consider LftL-bor-fracture:

&κfull Φ(1) ≡−∗Nlft ∃κ′, γ, i. κ v κ′ ∗ ∃qi. [Bor : i]qi
Nlft ∗&κ

′

i IΦ(κ′)

For this rule, we will need a stronger variant of LftL-bor-acc, which we
show in Figure 11.8: we need to (a) change the content of the borrow, not
just access it, and (b) do so without even owning any part of the lifetime
token.

The former is achieved by LftL-bor-acc-strong. Note that this is
an accessor, but it is not symmetric, so we have no convenient syntactic
sugar. The key feature of LftL-bor-acc-strong is that it lets us change
the borrowed proposition from P to Q, if we can also prove a view shift
that can convert Q back into P . This proof can itself consume arbitrary
resources (it does not have to be persistent), making this much stronger
than just saying that full borrows are closed under equivalence. Moreover,
this proof may to assume that the lifetime of the borrow has already
ended, which will be crucial. Note that we do not learn that the lifetime κ
that we ascribe to the borrow is dead, but the “true” lifetime κ′ of the
borrow without any shortening.34

For LftL-bor-fracture, we need a variant of LftL-bor-acc-
strong which additionally does not require a lifetime token. This is
achieved by LftL-bor-acc-atomic-strong, which is a lot like LftL-
idx-acc-atomic that we already saw. The rule says that either we have
atomic access to the borrow in the same way as LftL-bor-acc-strong,
or else we get a proof that the lifetime has already ended.35

To show LftL-bor-fracture, we start by allocating some ghost state
of type Frac (as defined in §4.1) for our custom token. We pick an initial
value of 1, so afterwards we own 1 γ .

The next step is to adjust the borrow of Φ(1), as described by the
following helper lemma:

&κfull Φ(1) ∗ 1 γ ≡−∗Nlft ∃κ′. κ v κ′ ∗&
κ′

full IΦ(κ′)

After applying that lemma, completing LftL-bor-fracture is just a
matter of using LftL-bor-idx, followed by putting the borrow token
into an invariant.

To prove the helper lemma, we apply LftL-bor-acc-atomic-strong.
In case the lifetime is already over, we get a dead token, so we can pick

33 At the end, we still own
[Bor : i]qi , which we throw
away. This is no problem as we
can always get more of that token
via frac-bor-tok.

34 Unfortunately, we cannot turn
[†κ′] into [†κ] because that view
shift requires a mask of Nlft, and
the strong accessor requires the
mask to be empty.

35 The point of |V∅ NlftTrue is to let
the client change the mask back to
what it was before.

154

Part II: RustBelt Chapter 11: Lifetime logic

Primitive rules.
LftL-bor-merge
&κfull P ∗&κfullQ ≡−∗Nlft &

κ
full(P ∗Q)

LftL-bor-fake
[†κ]VNlft &

κ
full P

LftL-bor-acc-strong
&κfull P ∗ [κ]q ≡−∗Nlft ∃κ′. κ v κ′ ∗ .P ∗

(
∀Q. . (.Q ∗ [†κ′] ≡−∗∅ .P) ∗ .Q ≡−∗Nlft &

κ′

fullQ ∗ [κ]q
)

LftL-bor-acc-atomic-strong
&κfull P ≡−∗Nlft ∅

(
∃κ′. κ v κ′ ∗ .P ∗

(
∀Q. . (.Q ∗ [†κ′] ≡−∗∅ .P) ∗ .Q ≡−∗∅ Nlft &κ

′

fullQ
))
∨(

[†κ] ∗ |V∅ Nlft True
)

Derived rules.
LftL-bor-unnest
&κ

′

full&κfull P .≡−∗Nlft &
κ′uκ
full P

Figure 11.8: Advanced proof
rules for full borrows.

κ′ := κ and “fake” the result using LftL-bor-fake—creating a borrow
at an already dead lifetime is a trivial operation, as such a borrow is
useless. In case the lifetime is still alive, we learn about the underlying
lifetime κ′ and κ v κ′, so we can already discharge those parts of the goal.
As the new borrow content we pick IΦ(κ′). This means we need to show
that we have . IΦ(κ′):

.Φ(1) ∗ 1 γ ≡−∗∅ . IΦ(κ′)

and that it can be turned back into the original content of the borrow:

. IΦ(κ′) ∗ [†κ′] ≡−∗∅ .Φ(1)

In both case we can remove the later modality in both assumption and
conclusion (.-mono). The former is now trivial (pick q := 1 for the
q hidden inside I). For the latter, LftL-not-own-end implies that
q = 1, and then we are done. (Ownership of 1 γ gets thrown away in the
process.)

These rules in Figure 11.8 are strong enough to derive LftL-bor-exists
which we saw before: we can open the borrow using LftL-bor-acc-
atomic-strong, and if κ is still ongoing we learn the current value of
x, we pick the new borrow content Q to “freeze” that x, and we are
done. In case the lifetime is already over, we obtain [†κ] which we use
with LftL-bor-fake and the fact that the domain of x is inhabited to
complete the proof.

The only remaining proof rule not mentioned yet in Figure 11.8 is
LftL-bor-merge, which shows that LftL-bor-split is invertible. This
rule will be shown in §11.7.

11.5.3 Reborrowing and other derived rules

Some of the proof rules in Figure 11.1 (page 142) can be derived from
more primitive rules: LftL-incl-isect and LftL-incl-glb are fairly

155

Part II: RustBelt Chapter 11: Lifetime logic

{κ′ v κ ∗&κfull P}Nlft

Use LftL-bor-idx, then borrow token at κ′ (LftL-borrow).{
&κi P ∗&κ

′

full [Bor : i]1 ∗
(
[†κ′] ≡−∗N . [Bor : i]1

)}
Nlft

Apply LftL-idx-bor-unnest on &κi P .{
&κuκ

′

full P ∗
(
[†κ′] ≡−∗Nlft . [Bor : i]1

)}
Nlft

By LftL-incl-glb, κ′ v κ and reflexivity of lifetime inclusion, we have κ′ v κ u κ′.
Use that with LftL-bor-shorten.{
&κ

′

full P ∗
(
[†κ′] ≡−∗Nlft . [Bor : i]1

)}
Nlft

Goal: |VNlft

(
&κ

′

full P ∗
(
[†κ′] ≡−∗Nlft &

κ
full P

))
Introduce update modality, and discharge first separating conjunct.{(

[†κ′] ≡−∗Nlft . [Bor : i]1
)}

Goal: [†κ′] ≡−∗Nlft &
κ
full P

Introduce assumption of magic wand.{
[†κ′] ∗

(
[†κ′] ≡−∗Nlft . [Bor : i]1

)}
Nlft

Use the view shift. Borrow tokens are timeless so we can use |V-timeless.
{[Bor : i]1}Nlft

Use LftL-bor-idx with the borrow token and &κi P .
{&κfull P}Nlft

Goal: |VNlft
&κfull P

Figure 11.9: Proof outline for
LftL-reborrow.

simple consequences of the definition of lifetime inclusion (LftL-incl).
LftL-bor-acc can be derived from LftL-bor-acc-strong by picking
Q := P . LftL-bor-shorten follows from LftL-idx-shorten.

But the most interesting derived rule is LftL-reborrow, which as
we will see can be derived from LftL-idx-bor-unnest:

κ′ v κ ∗&κfull P ≡−∗Nlft &
κ′

full P ∗
(
[†κ′] ≡−∗Nlft &

κ
full P

)
An outline for this proof is given in Figure 11.9.

Naively, we might want to just borrow &κfull P at lifetime κ′, but that
would not work because borrowing requires a leading . similar to invariants.
Instead, we do what we did for atomic and fractured borrows: we break
the borrow into its persistent and timeless parts, and only borrow the
timeless part [Bor : i]1 at lifetime κ′. Adding a later there poses no
problems, thanks to |V-timeless. At that point, we have:

&κi P ∗&κ
′

full [Bor : i]1 ∗
(
[†κ′] ≡−∗N . [Bor : i]1

)
The first two conjuncts exactly match LftL-idx-bor-unnest, so we
apply that rule. Now we can see why it is called “unnesting”: in some
sense, &κ

′

full [Bor : i]1 is a nested borrow (a “borrow of a borrow”),36 and
the rule lets us remove the nesting and obtain a borrow at the intersection
of the two lifetimes: &κuκ

′

full P . To obtain the first separating conjunct
of our goal, all we have to do is shorten the lifetime from κ u κ′ to κ′,
which LftL-incl-glb says is possible.37 For the second part, we make
use of the inheritance that we obtained when borrowing the borrow token:
[†κ′] ≡−∗Nlft . [Bor : i]1. That is already almost what we want, we only
need to turn [Bor : i]1 back into a full borrow, which we can do because

36 Only the token of the inner
borrow is borrowed, really, but since
the rest is persistent that does not
make a difference.

37 With κ′ v κ, we can show that
κ u κ′ and κ′ mutually outlive
each other—they are “equal”, at
least as far as lifetime inclusion is
concerned.

156

Part II: RustBelt Chapter 11: Lifetime logic

the token is timeless (so we can remove the .) and the indexed borrow itself
(&κi P) is persistent, and thus has not been “used up” by the unnesting.
This concludes the proof.

We can also derive a variant of unnesting for full borrows, LftL-
bor-unnest. Notice, however, that this uses a view shift that “takes
a step”, i.e., this rule is only useful when the program also performs a
step of computation. To derive LftL-bor-unnest, we start by turning
&κ

′

full&κfull P into the equivalent &κ
′

full ∃i. &κi P ∗ [Bor : i]1 (via LftL-idx-
iff). By LftL-bor-exists and LftL-bor-split, we have that there
exists some i such that &κ

′

full&κi P ∗&κ
′

full [Bor : i]1. Indexed borrows are
persistent, so we can open the first borrow with LftL-bor-acc-atomic-
strong, make a copy and close it again.38 This way, we obtain .&κi P .
Now we can take the step that the rule permits us to take, and finish off
the proof with LftL-idx-bor-unnest.

11.6 Implementing the lifetime logic (without reborrowing)

We have seen how indexed borrows form the foundation of all forms
of persistent borrowing, and how they reduce high-level rules such as
LftL-reborrow to lower-level principles. In terms of the picture in
Figure 11.4 (page 149) we have taken care of the topmost layer. Now it
is time to take a look at how lifetime tokens as well as indexed and full
borrows themselves can be implemented in Iris, and how the primitive
proof rules (Figure 11.8, Figure 11.5, and the parts of Figure 11.1 that
we have not derived yet) can be verified. We will not discuss in detail the
proof of every single proof rule, but pick a few representative ones.

For now, we restrict ourselves to the lifetime logic without reborrow-
ing/unnesting, i.e., rule LftL-idx-bor-unnest will not hold in this
model. LftL-bor-merge internally relies on reborrowing, so it will not
be available either. In the next section, we present a model that supports
all these missing pieces. The restricted model is simpler because without
reborrowing, we can think of each lifetime as entirely independent of all
the others. We will also not have LftL-idx-iff, which helps simplify the
model a bit more.

Before we consider the formal definition in all its glory, we give some
intuition for how lifetimes and their borrows are represented and managed
using Iris ghost state.

What is a lifetime? The first question to consider is: what is a lifetime κ?
What is the type of such an object? When a new lifetime is created (LftL-
begin), we call that lifetime an atomic lifetime, which is represented by
a unique identifier (similar to ghost names γ, we pick identifiers from
N). But we also have to define lifetime intersection, and to this end we
say that a lifetime is defined by the atomic lifetimes it is the intersection
of: a lifetime is a multiset of atomic lifetimes. This is defined formally
in Figure 11.10. We use a multiset because verifying LftL-tok-inter
requires keeping track of “how often” an atomic lifetime was intersected
into a lifetime.39

38 If the lifetime κ′ is already dead,
then so is κ′ u κ and thus we can
complete the proof easily with
LftL-bor-fake.

39 In other words, if we had κuκ = κ,
LftL-tok-inter could be used to
duplicate tokens.

157

Part II: RustBelt Chapter 11: Lifetime logic

Each lifetime will come with some ghost state to manage it. Concretely,
for each lifetime we need two ghost names to keep track of the borrows
at that lifetime and the inheritances activated when the lifetime ends.40
These ghost names are allocated on-demand when a composite (i.e., not
necessarily atomic) lifetime is used for the first time. To keep track of
these ghost names, we use another piece of ghost state: the resource
algebra ILft := Auth(Lft fin−⇀ Ag(N × N)) authoritatively associates each
lifetime with two ghost names (i.e., natural numbers). The lifetime logic
is parameterized by a global ghost name γi and will keep the authoritative
element of this RA in a global invariant; the fragments that express
knowledge about the ghost name of a particular lifetime are persistent
and can thus be shared freely.

Talking about ownership of some lifetime’s ghost state thus requires an
indirection: first we own some part of γi to learn the actual ghost name γ
used by the lifetime, and then we own some ghost state at γ. We introduce
OwnBor and OwnInh to abstract away that indirection (Figure 11.10).

We also need some ghost state to represent lifetime tokens and dead
tokens. The rule LftL-tok-inter already indicates that the token
for a composite lifetime consists of tokens for all the involved atomic
lifetimes, and that is indeed how the lifetime logic is defined: we have
another piece of global ghost state (besides γi) which tracks, for each
atomic lifetime, whether it is still alive. This ghost state uses the RA
ALft := Auth(ALft fin−⇀ Frac + ()), which authoritatively associates each
atomic lifetime with something akin to the oneshot RA (§4.1), except
there is no data to agree about when the “shot” has happened: the unit
RA () only has a single persistent element, so once the transition from
the left-hand side to the right-hand side of the sum has happened, we
can never switch back. inr() serves as a witness that this transition has
happened. inl(q) is a token we can own which shows that the transition
has not yet happened, and the lifetime is still alive.

Thus we can already define the first parts of the public interface to the
lifetime logic that we have seen before:

[κ]q :=∗
Λ∈κ

◦ [Λ← inl(q)] γa

[†κ] := ∃Λ ∈ κ. ◦ [Λ← inr()] γa

To own fraction q of a composite lifetime, we need to own that fraction of
each involved lifetime.41 To show that a composite lifetime has ended, it
is sufficient to demonstrate that any involved lifetime has ended.

Here we make use of another global parameter of the lifetime logic, γa,
which indicates the ghost name we use to manage atomic lifetimes. γi and
γa, and the namespace Nlft we have already seen in the proof rules, are the
only two parameters we will need. The lifetime logic needs more than one
invariant, so we separate Nlft into three disjoint sub-namespaces (which
is always possible with all namespaces): Nmgmt will contain the main
management invariant, Nbor will contain invariants to manage borrowed
resources, and Ninh will contain invariants to manage inheritances.

40 In principle, we could bundle
all ghost state of a lifetime under
a single name, but using multiple
names is more convenient as most of
the time, we only talk about one of
the two components.

41 The big separating conjunction
here takes multiplicities into ac-
count, so if an atomic lifetime Λ
occurs multiple times in κ, we also
own its token multiple times.

158

Part II: RustBelt Chapter 11: Lifetime logic

Domains.

Λ ∈ ALft := N (atomic lifetimes)
κ ∈ Lft := ℘fin,+(ALft) (lifetimes)
i ∈ Idx := Lft× N (borrow indices)
I ∈ ILft := Auth(Lft fin−⇀ Ag(N× N)) (global ghost state to manage lifetimes; name: γi)
A ∈ ALft := Auth(ALft fin−⇀ Frac + ()) (global ghost state for atomic lifetimes; name: γa)

BorSt := in | open(q : Frac) (state of a borrow box)
BorBox := Auth(N fin−⇀ Ag(BorSt)× Frac) (per-lifetime ghost state to manage borrow box; γbor)
InhBox := Auth(℘fin(N)) (per-lifetime ghost state to manage inheritance box; γinh)

Helper functions.

OwnBor(κ, a) := ∃γbor. ◦ [κ← γbor, ,] γi ∗ a : BorBox γbor

OwnInh(κ, a) := ∃γinh. ◦ [κ← , , γinh]
γi ∗ a : InhBox γinh

Intersection, tokens and inclusion.

κ1 u κ2 := κ1 ∪ κ2 (this is multiset union, adding up the multiplicities)

[κ]q :=∗
Λ∈κ

◦ [Λ← inl(q)] γa

[†κ] := ∃Λ ∈ κ. ◦ [Λ← inr()] γa

κ v κ′ := �
((
∀q.
(
[κ]q ∝Nlft q′. [κ′]q′

))
∗
(
[†κ′] ≡−∗Nlft [†κ]

))
Figure 11.10: Lifetime logic
domains, helper functions and
tokens (without reborrowing).

At this point, we can already show the shape of the global invariant
that all lifetime logic proof rules assume:

LftLInv := ∃A, I. •A γa ∗ •I γi ∗ ∗
κ∈dom(I)

LftInv(A, κ)

LftLCtx := LftInv Nmgmt

All rules are proven assuming LftLCtx is in their context. In that invariant,
we maintain ownership of the authoritative state for lifetime ghost names
and atomic lifetimes. Everything else is captured by the per-lifetime
invariant LftInv, and that is where things become more involved.

At a high level, each lifetime κ is in one of two possible states, as
indicated by the states of atomic lifetimes tracked in A: either it is alive
(so all atomic lifetimes Λ ∈ κ are alive), or it is dead (so some atomic
lifetime is dead).

LftAliveIn(A, κ) := ∀Λ ∈ κ. ∃q. A(Λ) = inl(q)
LftDeadIn(A, κ) := ∃Λ ∈ κ. A(Λ) = inr()

LftInv(A, κ) := LftAlive(κ) ∗ LftAliveIn(A, κ) ∨
LftDead(κ) ∗ LftDeadIn(A, κ)

But what exactly are the resources held in the invariant for each
lifetime? The rough idea is that there is some amount of borrowed

159

Part II: RustBelt Chapter 11: Lifetime logic

resources that is currently being managed by the lifetime. Let us call
that PB . Each time LftL-borrow is used, the borrowed proposition P
is being added to the PB for that lifetime. However, PB is not always
fully owned by the lifetime logic: after all, users can open borrows and
take resources “out of” the lifetime logic using LftL-bor-acc-strong.
This is a non-mask-changing accessor, so the lifetime invariant has to be
maintained even while the user holds on to these resources.42

To model this, we say that PB is equal to the separating conjunction
of all propositions Pi that have been borrowed at this lifetime: PB =
P0 ∗ P1 ∗ . . . ∗ Pn. A borrow logically represents ownership of one such
piece. Each of these pieces is currently either held inside the invariant, or
it has been given out to the client that owns it. The partitioning of PB
into these “slices” can be changed using rules like LftL-bor-split (which
splits a slice into two), LftL-bor-merge (which merges two slices into
one), and of course LftL-borrow (which adds a new slice). To separate
the handling of lifetimes and borrows from the handling of these “slices”,
we introduce a separate abstraction for the latter: the idea of a box. This
separation helps manage the quite large proof of the lifetime logic by
breaking it into smaller pieces.

11.6.1 Boxes

A box is a logical data structure that manages some proposition P

partitioned into slices Pi such that P =∗i Pi. Boxes support taking the
resources out of each slice separately and putting them back in. Being
able to take out the resources of a slice without outright removing it
from the box is useful when the overall content of the box is part of a
larger protocol—in the lifetime logic, we will have two boxes whose overall
content is related (one for borrows, one for inheritances), and still we need
to be able to take out the resources of individual slices of the borrow box.

The proof rules for a box are given in Figure 11.11. The two key
propositions of this abstraction are Box(N , P, f) and BoxSlice(N , Q, ι).
Box(N , P, f) says that in namespace N , we own a box with total re-
sources P , and f ∈ N fin−⇀ {empty, full} describes the current status of
each slice of this box, identified by its slice name ι ∈ N: each slice is
either currently full (the resources of this slice are held in the box) or it
is currently empty (the resources have been given out). BoxSlice(N , Q, ι)
(which is persistent) says that the slice named ι manages proposition Q.

Initially, a box is created with no slices (Box-create). Then we can
use Slice-insert-empty to add an empty slice with arbitrary (to-be-filled
in the future) content Q to a box. That changes the total resources of the
box from P to P ∗Q, and the slice map f is extended with some fresh
slice name ι to record the new empty slice.43

A slice thus created can be filled using Slice-fill, which consumes the
slice proposition Q and changes the slice state from empty to full. This
action can be undone using Slice-empty, which gives back ownership
of Q (albeit under a later, just like invariants44). Composing Slice-
insert-empty and Slice-fill leads to Slice-insert-full, a rule that
lets us add an already filled slice to a box.

42 The only other primitive rule
to access a borrow is LftL-bor-
acc-atomic-strong, and that rule
is mask-changing, so we can keep
the invariant open while the user
accesses the resources.

43 This rule uses the conditional
later modality .b, which is indexed
by a Boolean b: if b is true, then
this is equal to ., otherwise it is
just the identity modality (i.e., the
identity function on iProp). The
proof rules involving conditional
laters can be used either with or
without the modality; the key part
is that the use of the same Boolean
b throughout the rule means that
either all the indexed laters have
to be present, or none of them.
This is needed because the lifetime
logic sometimes has to (carefully)
work with resources under a later,
with no chance of getting rid of the
modality.

44 Under the hood, boxes are
implemented with higher-order
ghost state (§6.1).

160

Part II: RustBelt Chapter 11: Lifetime logic

Basic proof rules.

Box-create
TrueVN Box(N ,True, ∅)

Slice-persist
persistent(BoxSlice(N , Q, ι))

Slice-insert-empty
.b Box(N , P, f)VN ∃ι /∈ dom(f).BoxSlice(N , Q, ι) ∗ .b Box(N , P ∗Q, f [ι← empty])

Slice-delete-empty
f(ι) = empty

BoxSlice(N , Q, ι) ` .b Box(N , P, f)VN ∃P ′. .b(.(P = (P ′ ∗Q)) ∗ Box(N , P ′, f [ι←⊥]))

Slice-fill
f(ι) = empty

BoxSlice(N , Q, ι) ` .bQ ∗ .Box(N , P, f)VN .b Box(N , P, f [ι← full])

Slice-empty
f(ι) = full

BoxSlice(N , Q, ι) ` .b Box(N , P, f)VN .Q ∗ .b Box(N , P, f [ι← empty])

Box-fill
∀ι ∈ dom(f). f(ι) = empty

.P ∗ Box(N , P, f)VN Box(N , P, f [ι← full | ι ∈ dom(f)])

Box-empty
∀ι ∈ dom(f). f(ι) = full

Box(N , P, f)VN .P ∗ Box(N , P, f [ι← empty | ι ∈ dom(f)])

Derived proof rules.

Slice-insert-full
.Q ∗ .b Box(N , P, f)VN ∃ι /∈ dom(f). �BoxSlice(N , Q, ι) ∗ .b Box(N , P ∗Q, f [ι← full])

Slice-delete-full
f(ι) = full

BoxSlice(N , Q, ι) ` .b Box(N , P, f)VN .Q ∗ ∃P ′. .b(.(P = P ′ ∗Q) ∗ Box(N , P ′, f [ι←⊥]))

Slice-split
f(ι) = s

BoxSlice(N , Q1 ∗Q2, ι) ` .b Box(N , P, f)VN ∃ι1 /∈ dom(f), ι2 /∈ dom(f). ι1 6= ι2 ∗
�BoxSlice(N , Q1, ι1) ∗�BoxSlice(N , Q2, ι2) ∗ .b Box(N , P, f [ι←⊥][ι1← s][ι2← s])

Slice-merge
ι1 6= ι2 f(ι1) = f(ι2) = s

BoxSlice(N , Q1, ι1),BoxSlice(N , Q2, ι2) ` .b Box(N , P, f)VN ∃ι /∈ dom(f) \ {ι1, ι2} .
�BoxSlice(N , Q1 ∗Q2, ι) ∗ .b Box(N , P, f [ι1←⊥][ι2←⊥][ι← s])

Figure 11.11: Proof rules for a
box.

161

Part II: RustBelt Chapter 11: Lifetime logic

Slices can also be removed again: Slice-delete-empty says that we
can take any slice and remove it from the box. This of course has an effect
on the proposition P describing the full content of the box: we have to
“remove” Q. Concretely, we learn that the previous content P is actually
equal to Q ∗ P ′ for some P ′ describing the “remainder” of the content.45
Slice-delete-full shows that we can also delete a slice that is currently
full, and doing so returns its content to us.

Given BoxSlice(N , Q1∗Q2, ι), we can split this slice by removing it, and
then adding two new slices for Q1 and Q2, respectively. This is expressed
by the derived rule Slice-split. The total resources P , of course, do
not change when doing this. The newly created slices are either both
empty or both full, depending on the status of the old slice. Similarly,
Slice-merge lets us merge two slices (that have to have identical state:
either both empty or both full). This again happens by removing the two
old slices and adding a new one.

And finally, we can fill and empty the entire box, without even knowing
the contributions of the individual slices: Box-empty says that if all
slices are full, we can empty them all and obtain .P ; and Box-fill lets
us do the inverse when all slices are empty. These two proof rules are
really what makes boxes so powerful: they let us maintain two equivalent
views on the resources in the box, either slice-by-slice or the entire box at
once, and both views are permitted to take resources out of the box or
put them back in.

The Iris technical appendix46 shows how boxes can be implemented
in Iris using higher-order ghost state (§6.1). However, the details of that
implementation do not matter for the lifetime logic.

11.6.2 Controlling borrows and inheritances

With boxes at hand, we now have a tool to describe a lifetime that is
alive: there is some proposition PB describing everything borrowed at
this lifetime, and the invariant maintains a box with total proposition PB .
We use some ghost state to keep track of the slices of that box, and hand
that ghost state out to clients: a borrow &κfull P really means controlling
the state of some slice with content P in the box for lifetime κ.

This ghost state, in fact, is what we defined OwnBor for above: BorSt
(Figure 11.10) describes the possible states of a slice in the borrow box.
Either the resources are currently in the invariant (in), or the borrow is
open, using fraction q of the lifetime token (open(q)). We use the resource
algebra BorBox := Auth(N fin−⇀ Ag(BorSt)× Frac) to track this state. The
fraction here is used to model the fraction in the borrow token ([Bor : i]q);
this is the same pattern that we saw when modeling fractional points-to
assertions for a heap (see §4.4, where we used Ag(Val)× Frac).

After all this preparation, we can finally define borrow tokens and
indexed borrows! There is just one last thing: we need to explain what
exactly an index i is. To actually identify a particular slice of a borrow
box, we need two pieces: a lifetime κ, and a slice name ι. Thus, we say
that an index is a pair of a lifetime and a slice name: i = (κ, ι).

45 All of this happens under a
suitable amount of later modalities,
again as a side-effect of using higher-
order ghost state.

46 Iris Team, “The Iris 3.2 documen-
tation”, 2019 [Iri19], §10.3.

162

Part II: RustBelt Chapter 11: Lifetime logic

Then borrow tokens and indexed borrows are defined as follows:

[Bor : (κ′, ι)]q := OwnBor(κ′, ◦(ι← (in, q)))

&κ(κ′,ι) P := κ v κ′ ∗ BoxSlice(Nbor, P, ι)

Remember that OwnBor looks up the ghost name γbor used by lifetime κ′

to manage its borrow state, and asserts ownership at that ghost name. In
other words, a borrow token is (fractional) ownership of the element ι in
the borrow state of lifetime κ′, stating that the borrowed resources are
currently held in the invariant. And an indexed borrow says that the slice
named ι contains the borrowed proposition P (and that the “externally
visible” lifetime κ is a sublifetime of the lifetime κ′ at which the borrow
is actually stored).

We can also define full borrows, introducing an internal helper notion
of a raw borrow:

RawBor(κ, P) := ∃ι. BoxSlice(Nbor, P, ι) ∗ OwnBor(κ, ◦(ι← (in, 1)))
&κfull P := ∃κ′. κ v κ′ ∗ RawBor(κ′, P)

A raw borrow RawBor(κ, P) says that there exists some slice ι containing
P , and that we fully own that slice as part of the borrow box of lifetime κ.
A full borrow then quantifies over an arbitrary lifetime bigger than the
user-visible κ, similar to what we already saw for fractured borrows—this
is needed to make LftL-bor-shorten provable.

This should give a rough idea for how we model and manage the borrows at
a lifetime. Before we can look at the per-lifetime invariant, we have to also
briefly talk about inheritances. The inheritance [†κ] ≡−∗Nlft .P is provided
by LftL-borrow upon borrowing P . Similar to and independent of
borrows, an inheritance claims ownership of some part of the resources
in the borrow. To this end, a lifetime contains a second box: besides the
borrow box that we already talked about, there is an inheritance box. Its
slices are managed by the second bit of per-lifetime ghost state, OwnInh
(which looks up the ghost name γinh used by a lifetime to control its
inheritances). The protocol for inheritances is simpler than for borrows:
unlike borrows, inheritances are claimed once and can then never be
used again. Thus all we need is some per-inheritance token representing
ownership of the respective slice in the inheritance box. This is controlled
by the RA InhBox := Auth(℘fin(N)), an (authoritative) finite set of slice
names with disjoint union for its composition.47

Initially, the inheritance box will have the same total content PB as
the borrow box. However, remember that LftL-bor-acc-strong lets
the client change the borrowed proposition, which will under the hood
translate to changing (removing and re-adding) the corresponding slice
of the borrow box. But we cannot also adjust the inheritance box, as
the resources controlling its slices are already backing the inheritance,
owned by the client. Instead, we say that the two boxes in a lifetime have
total content PB (the borrow box) and PI (the inheritance box), and we
maintain (very roughly) that PB −∗ PI .

When the lifetime is alive, the slices of the borrow box are controlled
via OwnBor, but the inheritance box is entirely empty. The resources that

47 This is isomorphic to
Auth(℘fin(N) fin−⇀ Ex()). In other
words, each slice is either exclusively
owned or not owned at all (not in
the map).

163

Part II: RustBelt Chapter 11: Lifetime logic

will fill the inheritance box are still borrowed! When the lifetime ends, we
will prove that all slices of the borrow box are full. That enables us to use
Box-empty which empties the entire borrow box, providing ownership
of PB . Then we use the above magic wand to turn PB into PI , and finally
we use Box-fill to fill the entire inheritance box. Henceforth, the slices
of the inheritance box are controlled by OwnInh, while the borrow box is
empty.

11.6.3 The per-lifetime invariant

All the pieces are now prepared to take a closer look at the formal
definition of the per-lifetime invariant (without support for reborrowing)
in Figure 11.12. We also repeat the definition of borrows and the global
invariant that we have already introduced. Remember, this is not yet a
model of the full lifetime logic; this is the simplified version that does not
support reborrowing (i.e., LftL-idx-bor-unnest does not hold).

Let us first look at the simpler case of a dead lifetime. LftDead says
that a dead lifetime comes with some proposition PI describing all the
inheritances that have not been claimed yet.

In LftInh, we use the usual pattern of authoritative ghost state (§4.4):
we quantify over the current state (in this case, E is a set containing the
slice names of the remaining inheritances) and tie the authoritative element
(OwnInh) to the state we want to control (the slices of the inheritance
box). PI is set to be the full proposition of the inheritance box, and all
its slices (as given by E) are in the same state s—for a dead lifetime, they
are all full.

The other part of a dead lifetime is LftBorDead, which controls what
is left of the borrow box. One might think that we can just entirely
forget about the borrow box when we are done, but that does not work:
to support creating “fake” borrows via LftL-bor-fake (amongst other
reasons), we need to keep the borrow box around. So we use another
instance of the authoritative pattern and quantify over the set B of
remaining borrows. In the authoritative state, all of the borrows are
currently considered to have their resources in the lifetime, i.e., their state
is (in, 1).48 However, the full content PB of the borrow box is entirely
irrelevant, and all slices are empty. There are no resources left here, just
an empty skeleton of bookkeeping.

The more complicated case is the one of the lifetime still being alive.
In LftAlive, we track the two propositions PB and PI describing all the
borrowed and to-be-inherited resources, respectively. LftBorAlive manages
the borrow box, LftVs manages the relationship between the two boxes,
and LftInh manages the inheritance box.

We have already seen LftInh; the only difference to before is that now,
of course, all its slices are empty. Nothing can be inherited while the
lifetime is still alive. LftVs is pretty simple at this point, just a view shift
that turns all the borrows into all the inheritances under the assumption
that the lifetime is dead.

48 The 1 here arises for the same
reason as it did back in §4.4: the
authoritative state has to subsume
all the fragments combined.

164

Part II: RustBelt Chapter 11: Lifetime logic

Borrows.

[Bor : (κ′, ι)]q := OwnBor(κ′, ◦(ι← (in, q)))

&κ(κ′,ι) P := κ v κ′ ∗ BoxSlice(Nbor, P, ι)

RawBor(κ, P) := ∃ι. BoxSlice(Nbor, P, ι) ∗ OwnBor(κ, ◦(ι← (in, 1)))
&κfull P := ∃κ′. κ v κ′ ∗ RawBor(κ′, P)

Invariant.

LftInh(κ, PI , s) := ∃E : ℘fin(N).OwnInh(κ, •E) ∗ Box(Ninh, PI ,[ι← s | ι ∈ E])
LftBorDead(κ) := ∃B : ℘fin(N), PB : iProp.OwnBor(κ, •[ι←(in, 1) | ι ∈ B]) ∗

Box(Nbor, PB ,[ι← empty | ι ∈ dom(B)])
LftDead(κ) := ∃PI . LftBorDead(κ) ∗ LftInh(κ, PI , full)

bor_to_box(s) :=

full if s = in
empty otherwise

LftBorDeposit(κ,B) := ∗
ι∈dom(B)

{
True if B(ι) = in
[κ]q if B(ι) = open(q)

}
LftBorAlive(κ, PB) := ∃B : N fin−⇀ BorSt.OwnBor(κ, •[ι←(B(ι), 1) | ι ∈ dom(B)]) ∗

Box(Nbor, PB , bor_to_box 〈$〉 B) ∗ LftBorDeposit(κ,B)
LftVs(κ, PB , PI) := .PB ∗ [†κ] ≡−∗Nbor .PI

LftAlive(κ) := ∃PB , PI . LftBorAlive(κ, PB) ∗ LftVs(κ, PB , PI) ∗ LftInh(κ, PI , empty)

LftAliveIn(A, κ) := ∀Λ ∈ κ. ∃q. A(Λ) = inl(q)
LftDeadIn(A, κ) := ∃Λ ∈ κ. A(Λ) = inr()

LftInv(A, κ) := LftAlive(κ) ∗ LftAliveIn(A, κ) ∨
LftDead(κ) ∗ LftDeadIn(A, κ)

LftLInv := ∃A, I. •A γa ∗ •I γi ∗ ∗
κ∈dom(I)

LftInv(A, κ)

LftLCtx := LftInv Nmgmt

Figure 11.12: Lifetime logic in-
variant (without reborrowing).

And finally, LftBorAlive is where the main borrow management happens.
We quantify over the map B describing the state for each borrow, and
make sure that it syncs up with OwnBor via the authoritative element. We
also connect B to the state of the borrow box slices; bor_to_box is used
to define that borrows in the in state have full slices while all remaining
borrows have empty slices (because they are currently being held open by
a client). Finally, in LftBorDeposit we claim a “deposit” for every borrow
that is currently open in the form of some fraction of the corresponding
lifetime token. The deposited amount is determined by the borrow state.

165

Part II: RustBelt Chapter 11: Lifetime logic

11.6.4 Lifetime logic proofs

Having laid down all the definitions, we now give a high-level intuition
for what happens when proving the rules of the lifetime logic.

The rules for handling lifetime tokens (LftL-tok-timeless,LftL-
end-persist, LftL-tok-fract, LftL-tok-inter, LftL-end-inter,
LftL-tok-unit, LftL-end-unit, LftL-not-own-end) are all trivial
based on our choice for the underlying models for lifetime tokens and
dead tokens.

Proof sketch for LftL-begin. Let us look at a more interesting rule:

LftL-begin
True ≡−∗Nlft ∃κ. [κ]1 ∗

(
[κ]1 .≡−∗Nlft [†κ]

)
This rule allocates a new atomic lifetime. So we start by opening the life-
time invariant. We pick some fresh Λ /∈ A and add it to the authoritative
ghost state, obtaining ownership of its entire lifetime token. When closing
the invariant again, we have to show that adding a fresh element to A does
not affect LftAliveIn(A,_) or LftDeadIn(A,_), but that is straightforward.
And that is actually all that happens right now—we pick κ := {Λ} as the
lifetime returned to the client, and we already own the token for that.

Besides that, we also have to prove the view shift that takes a step
to end the lifetime: [{Λ}]1 .≡−∗Nlft [† {Λ}]. In the full lifetime logic with
reborrowing, this will be the most complicated part of the entire proof;
for now, it is not quite so complicated but still nontrivial. After opening
the lifetime logic invariant, the first thing we do is to exploit that we are
proving a view shift that takes a step, so we can remove a . from our
assumption. Without this step, we would have no way to work with all
the non-timeless resources in LftLInv. It remains to show the following:

LftLInv ∗ [{Λ}]1 ≡−∗Nlft\Nmgmt LftLInv ∗ [† {Λ}]

We switch the status of Λ in A to inr() which we can do because we own
the full token, obtaining [† {Λ}]. Next, we also have to actually end all the
lifetimes κ that were obtained by intersecting Λ with some other lifetimes.
In other words, we have to go over all lifetimes κ registered in I, and if
any of them is currently still alive and Λ ∈ κ, then we have to switch the
state of κ from “alive” to “dead”:

LftAlive(κ) ∗ [† {Λ}] ∗ Λ ∈ κ ≡−∗Nlft\Nmgmt LftDead(κ) (Lft-end1)

(LftDeadIn is trivial because we just switched Λ to be dead in A.)
The first step is to empty the borrow box, which is expressed by the

following helper lemma:

LftBorAlive(κ, PB) ∗ [† {Λ}] ∗ Λ ∈ κ ≡−∗Nlft\Nmgmt LftBorDead(κ) ∗ .PB

This is done using Box-empty, so we have to prove that every slice of
the borrow box is currently filled. Looking at LftBorAlive, we learn the
current borrow box state B. It is sufficient to show that B(ι) = in for
all ι. But we know this to be the case because if we had B(ι) = open(q)
for any ι, then by the definition of LftBorDeposit we would own [κ]q. But

166

Part II: RustBelt Chapter 11: Lifetime logic

we also own [† {Λ}], and since Λ ∈ κ, this implies [†κ], so we have a
contradiction by LftL-not-own-end. It follows that all slices of the
borrow box are full, and using Box-empty we obtain .PB.49 We also
obtain whatever is left of LftBorAlive, namely the authoritative OwnBor
for κ as well as ownership of the emptied borrow box; this fits exactly to
prove LftBorDead.

The next step is easy: using LftVs, we turn .PB into .PI . This
requires [†κ], which we already established we can show at this point
(having ended Λ ∈ κ).50 We are free to eliminate the update modality
and obtain .PI .

The third and final step is to fill the inheritance box:

LftInh(κ, PI , empty) ∗ .PI ≡−∗Nlft\Nmgmt LftInh(κ, PI , full)

This is a fairly straightforward application of Box-fill, because we
already know that all slices of the inheritance box are initially empty.51

This completes the proof of Lft-end1 and thus of LftL-begin.

Proof sketch for LftL-borrow. We have seen how borrowed resources
turn into inheritances when the lifetime ends. Let us now consider how
borrows are created in the first place, and how inheritances yield resources
back to clients:

LftL-borrow
.P ≡−∗Nlft &

κ
full P ∗

(
[†κ] ≡−∗Nlft .P

)
As usual, first we will open the lifetime logic invariant. Now we need to
get hold of LftInv(A, κ), but what if κ is not yet in I? New lifetimes can
be created via intersection by the client any time, so there is no guarantee
that the lifetime logic has seen κ before. If it does not exist yet, we will
have to create it.52

Initializing a lifetime with no borrows is a bit tedious but not very
interesting, we just have to create lots of ghost state. We create an
empty borrow box and an empty inheritance box, with PB := True and
PI := True. Both B and E (the state managing the borrow and inheritance
box, respectively) are initially empty. We also exploit the fact that every
lifetime κ is either dead or alive, or contains some unmanaged atomic
lifetime:

∀A, κ. LftAliveIn(A, κ) ∨ LftDeadIn(A, κ) ∨
(
∃Λ ∈ κ.Λ /∈ dom(A)

)
In the first case, we can easily show LftAlive(κ) and be done. Similarly, in
the second case we can show LftDead(κ). In the last, we can add that Λ
to A as dead, and then prove LftDeadIn(κ).

At this point we can assume that κ ∈ dom(I). We also observe that
RawBor(κ, P) −∗ &κfull P , so it suffices to show:

. LftInv(κ) ∗ .P ≡−∗Nlft\Nmgmt

. LftInv(κ) ∗ RawBor(κ, P) ∗
(
[†κ] ≡−∗Nlft .P

)
(Lft-bor)

First, we perform case distinction on whether κ is alive or not.

49 This rule requires mask Nbor. Our
current mask is Nlft \Nmgmt and Nbor
is picked to be contained in Nlft but
disjoint from Nmgmt, so we are good
to go.

50 Again we need mask Nbor, which
works out for the same reason as
before.

51 We need mask Ninh for this step,
but Ninh is disjoint from Nmgmt
like Nbor, so the same argument as
before applies.

52 Note that it might also be the
case that κ has already ended; we
will get to that point later.

167

Part II: RustBelt Chapter 11: Lifetime logic

If it is dead, we “fake” a borrow while keeping .P to ourselves:

. LftBorDead(κ) ≡−∗Nlft\Nmgmt . LftBorDead(κ) ∗ RawBor(κ, P)
(Lft-fake)

To prove “faking”, we exploit the fact that LftBorDead owns the borrow
box with all slices being empty, so we apply Slice-insert-empty to
add a new one, and extend the authoritative state and B appropriately
to create the corresponding borrow token. That means we still own .P
when we prove the inheritance, which becomes trivial.

The interesting case of Lft-bor is when κ is still alive. The first
helper lemma we show is for adding a slice to the borrow box:

. LftBorAlive(κ, PB) ∗ .P ≡−∗Nlft\Nmgmt

. LftBorAlive(κ, PB ∗ P) ∗ RawBor(κ, P) (Lft-bor’)

To this end, we use Slice-insert-full.53 We have to give up .P but
obtain some new ι /∈ dom(B), ownership of the slice BoxSlice(Nbor, P, ι),
and the changed box with new total content PB ∗ P . To re-establish
LftBorAlive, we need to get the box state back in sync with the ghost state
again, so we need to adjust B (as usual for the authoritative pattern).
The new B will be B[ι← in]. Since ι is fresh, we can do a frame-preserving
update to add it to the authoritative state that we own in OwnBor, which
also creates the fragment OwnBor(κ, ◦(ι← (in, 1))) for us to keep (as per
fmap-alloc-local on page 61). Changing B also requires us to re-prove
LftBorDeposit, but since the new borrow we added has its resources in the
lifetime invariant (borrow state in), nothing changes there. This means
we can prove . LftBorAlive(κ, PB ∗ P), and the resources we have left are
BoxSlice(Nbor, P, ι) ∗ OwnBor(κ, ◦(ι← (in, 1))), which is exactly what we
need for RawBor(κ, P). Thus, this first step (Lft-bor’) is done.

The second lemma we need lets us add a new inheritance:

. LftInh(κ, PI , empty) ≡−∗Nlft\Nmgmt . LftInh(κ, PI ∗ P, empty) ∗
∃ι.OwnInh(κ, ◦ {ι}) ∗ BoxSlice(Ninh, P, ι)

This time we use Slice-insert-empty54 to create a new slice ι /∈ E in
the inheritance box. We pick E∪{ι} as the new E, so we have to sync the
authoritative ghost state with the box again via a frame-preserving update.
As usual, this also allocates a fragment that we will own: OwnInh(κ, ◦ {ι}).
With that, the proof of the lemma is complete.

Since we changed both PB and PI , we also need to re-prove LftVs.
However, showing the following is easy:

. LftVs(κ, PB , PI) −∗ . LftVs(κ, PB ∗ P, PI ∗ P)

We can remove the . on both sides using .-mono. Inside LftVs, the new
resources P can simply be framed around the view shift that we already
have.

With all these lemmas, we can re-establish . LftInv(κ), and we have
already produced RawBor(κ, P). All that is left in showing Lft-bor is
proving that we can actually take P out again when the lifetime is dead.

53 Notice that we own the box
itself only under a ., but the rule
says that is sufficient (though of
course the changed box we get back
will then also be under a .). We
heavily exploit that . commutes
with separating conjunction as
well as existential quantifiers with
non-empty domain.

54 Again with the box owned under
a ..

168

Part II: RustBelt Chapter 11: Lifetime logic

We have some resources left over from creating the inheritance slice in
the second lemma, leading to the following remaining proof obligation:

OwnInh(κ, ◦ {ι}) ∗ BoxSlice(Ninh, P, ι) ∗ [†κ] ≡−∗Nlft .P

Again we start by opening the lifetime logic invariant. Since we own a
token for κ, we know that κ ∈ dom(I). Moreover, we can show that the
lifetime cannot be alive any more: •A γa ∗ [†κ] ∗ LftAliveIn(A, κ) −∗ False.
Thus it suffices to show:

. LftInh(κ, PI , full) ∗ OwnInh(κ, ◦ {ι}) ∗ BoxSlice(Ninh, P, ι) ≡−∗Nlft\Nmgmt

∃P ′I . . LftInh(κ, P ′I , full) ∗ .P

We unfold . LftInh(κ, PI , full) to obtain authoritative ownership of the
inheritance slice management, and ownership of the inheritance box.
From our fragment of OwnInh combined with the authoritative element,
we learn that ι ∈ E (otherwise •E · ◦ {ι} would be invalid). Thus ι is a
slice in the inheritance box, and it is currently full. We also have the
matching BoxSlice, so we can use Slice-delete-full to remove that slice,
obtaining a new box (with a changed total resource, but PI is otherwise
unconstrained so we can change it easily55). That rule also provides the
content of the slice to us, which we know to be .P . To re-establish LftInh,
we need to adjust the authoritative OwnInh to remove ι from E, which
we can do because we own the relevant fragment. Then we are done.

Proof sketch for LftL-bor-acc-strong. As the third and final proof
rule that we will look at in detail, we consider LftL-bor-acc-strong.
Or rather, we show the following variant for raw borrows:

RawBor(κ, P) ∗ [κ]q ≡−∗Nlft .P ∗(
∀Q. . (.Q ∗ [†κ] ≡−∗∅ .P) ∗ .Q ≡−∗Nlft RawBor(κ,Q) ∗ [κ]q

)
(LftL-raw-bor-acc)

Deriving LftL-bor-acc-strong from this is just a matter of unfolding
the definition of full borrows.

We decompose this rule into two parts: opening the borrow, and closing
it again. The first part is expressed by the following helper lemma, where
we also unfold RawBor:56

BoxSlice(Nbor, P, ι) ∗ OwnBor(κ, ◦(ι← (in, 1))) ∗ [κ]q ≡−∗Nlft

OwnBor(κ, ◦(ι← (open(q), 1))) ∗ .P
(LftL-raw-bor-open)

The key difference between the left-hand side and the right-hand side is
that we lose [κ]q and gain .P , and the borrow state (that we track via
OwnBor, i.e., via the borrow token) changes from in to open(q) to record
the fraction of the lifetime token that we lost.

We begin again by opening the lifetime logic invariant, and since we
own a token for κ we know that κ ∈ dom(I). Thus we obtain . LftInv(κ).
We also know that the lifetime has to be alive, because otherwise we obtain
a contradiction: •A γa ∗ [κ]q ∗ LftDeadIn(A, κ) −∗ False. The interesting

55 While the lifetime is active, we
have to keep careful track of the
total resources in both the borrow
and inheritance box so that we can
use the content of the former to fill
the latter when the lifetime ends.
But once the lifetime is over, the
lifetime invariant does not care any
more about the content of the boxes,
all it does is bookkeeping to track
the slices they contain.

56 Remember that
BoxSlice(Nbor, P, ι) is persistent,
hence we do not repeat it in the
conclusion.

169

Part II: RustBelt Chapter 11: Lifetime logic

part of the lifetime invariant is LftBorAlive, about which it suffices to show
the following lemma:

. LftBorAlive(κ, PB) ∗
BoxSlice(Nbor, P, ι) ∗ OwnBor(κ, ◦(ι← (in, 1))) ∗ [κ]q ≡−∗Nlft\Nmgmt

. LftBorAlive(κ, PB) ∗ OwnBor(κ, ◦(ι← (open(q), 1))) ∗ .P

After unfolding LftBorAlive, we combine our OwnBor with the authoritative
element and learn that B(ι) = in.57 Thus the slice ι is part of the borrow
box and currently full. We use Slice-empty to take out the slice resources,
which we know to be .P . Now we need to sync the box state with the
authoritative state again, to which end we change B(ι) to open(q). We
can do that because we own the authoritative element. But we also need
to show LftBorDeposit, which requires us to give up [κ]q matching the
new borrow state of ι. This completes the lemma, and thus we are done
with the opening phase of accessing the borrow (LftL-raw-bor-open).

For the closing part, we need the following lemma:

. (.Q ∗ [†κ] ≡−∗∅ .P) ∗ .Q ∗
BoxSlice(Nbor, P, ι) ∗ OwnBor(κ, ◦(ι← (open(q), 1))) ≡−∗Nlft

∃ι′.BoxSlice(Nbor, Q, ι
′) ∗ OwnBor(κ, ◦(ι′ ← (in, 1))) ∗ [κ]q

(LftL-raw-bor-close)

Note that the conclusion of this rule is the same as the result of the last
view shift in LftL-raw-bor-acc, we just unfolded the raw borrow. We
need a new ι′ because the content of the borrow might change, so we
cannot reuse the old slice.

We open the lifetime logic invariant, and since we have an OwnBor
for κ we know that κ ∈ dom(I) so we can access . LftInv(κ). We need to
again argue that the lifetime is still alive, but the argument is a bit more
subtle this time: if the lifetime was dead, we would get . LftBorDead(κ),
which authoritatively says that the state of all borrows is in. But we have
a borrow in a different state (open(q)), so we have a contradiction.58

Since the lifetime is alive, we can access . LftAlive(κ). The first step in
closing the borrow is to change the state of the borrow slice back to in,
which is done via the following lemma:

. LftBorAlive(PB) ∗ .Q ∗
BoxSlice(Nbor, P, ι) ∗ OwnBor(κ, ◦(ι← (open(q), 1))) ≡−∗Nlft\Nmgmt

∃P ′B . . LftBorAlive(P ′B ∗Q) ∗ . .(PB = (P ′B ∗ P)) ∗
∃ι′.BoxSlice(Nbor, Q, ι

′) ∗ OwnBor(κ, ◦(ι′ ← (in, 1))) ∗ [κ]q

As usual when applying the authoritative pattern, we combine our own
fragment (OwnBor) with the authoritative state to learn that B(ι) =
open(q). This tells us that ι is an empty slice in the borrow box, which
we already know to have content .P . We use Slice-delete-empty
to get rid of that slice. In so doing, the total content of the borrow
box changes to some P ′B such that . .(PB = (P ′B ∗ P)).59 Next we use
Slice-insert-full to add a new slice with content Q; let ι′ be the name
of that new slice. The content of the borrow box is now P ′B ∗Q, so we

57 The reasoning here is very similar
to fheap-auth-ag0 (page 57).

58 This is the other reason (besides
“faking” borrows) for why we need
LftBorDead.

59 The nested laters may look daunt-
ing, but that is just a distraction.

170

Part II: RustBelt Chapter 11: Lifetime logic

can see how things are shaping up towards the conclusion of our lemma.
What is left to do is to sync up the authoritative state with the borrow
box again: we remove ι and add ι′ in B, which consumes ownership of
OwnBor for ι and produces OwnBor(κ, ◦(ι′ ← (in, 1))). We also need to
re-prove LftBorDeposit, and since we removed a borrow with state open(q)
from B, that means we gain ownership of fraction q of the lifetime token.
(The new borrow ι′ is in state in, so there is nothing to deposit there.)
This concludes the first step of LftL-raw-bor-close.

For the second step, we need to adjust LftVs because the first step
changed PB . This is done via the following lemma:

. LftVs(κ, PB , PI) ∗ . .(PB = (P ′B ∗ P)) ∗ . (.Q ∗ [†κ] ≡−∗∅ .P) −∗
. LftVs(κ, P ′B ∗Q,PI)

Intuitively, this makes sense because all we do is remove a P from PB

and replace it with Q, and since we also know that we can turn Q back
into P , it should be clear that we can turn P ′B ∗ Q back into PB and
then continue with the view shift to PI as before. Actually getting there,
however, requires shuffling around a lot of symbols.

Note that each assumption and the conclusion starts with a ., so we
can remove one level of . anywhere. After unfolding LftVs we see that it
is sufficient to show:60

(.PB ∗ [†κ] ≡−∗Nbor .PI) ∗ .(PB = (P ′B ∗ P)) ∗ (.Q ∗ [†κ] ≡−∗∅ .P) −∗
.(P ′B ∗Q) ∗ [†κ] ≡−∗Nbor

.PI

There are a lot of resources and magic wands flying around here that we
have to chain in the right way. The first step is to take the .Q that we
own (remember that . commutes with separating conjunction), together
with the (persistent) [†κ], and turn it into .P using the corresponding
view shift (the one with mask ∅). We also apply the first view shift, which
says that to prove .PI (under an update modality) it is sufficient to prove
.PB ∗ [†κ]. The remaining statement is already much cleaner:

.(PB = (P ′B ∗ P)) ∗ .P ′B ∗ .P ∗ [†κ] ≡−∗Nbor .PB ∗ [†κ]

We remove the update modality from the goal. The second separating
conjunct is easily proven as we own [†κ]. Now the goal again starts with
a ., so we may remove another level of . from all assumptions, which
leaves us with:

(PB = (P ′B ∗ P)) ∗ P ′B ∗ P −∗ PB

After rewriting with the equality, this goal is trivial. This concludes the
proof of LftL-raw-bor-close and thus of LftL-raw-bor-acc.

Remaining proof rules for full borrows. The remaining proof rules for
full borrows do not use anything we have not seen yet. LftL-bor-fake
is an easy consequence of Lft-fake that we already used to prove LftL-
borrow. LftL-bor-split adjusts the borrow box using Slice-split
(of course, it also has to update the authoritative state managing B,

60 Magic wand curries much like
implication: P −∗ Q −∗ R is
equivalent to P ∗ Q −∗ R. In other
words, everything except for the
final .PI is an assumption in this
statement, and |VNbor

.PI is the
goal.

171

Part II: RustBelt Chapter 11: Lifetime logic

but it owns all the tokens required to do so).61 LftL-bor-acc-atomic-
strong is similar to LftL-bor-acc-strong, except that the lifetime
logic invariant is never closed between opening and closing the borrow, so
there is no need to ever leave a token as a deposit. LftL-bor-shorten
is trivial, given how full borrows are defined.

Proof rules for indexed borrows. Most proof rules for indexed borrows are
easy to verify: LftL-bor-idx, LftL-idx-persist, LftL-idx-timeless,
LftL-idx-fract, LftL-idx-shorten are all direct consequences of how
indexed borrows and borrow tokens are defined. LftL-idx-acc is similar
to LftL-bor-acc-strong, except that on the closing side we use Slice-
fill to re-fill the existing slice (instead of deleting that slice and adding
a different one). Likewise, LftL-idx-acc-atomic is a simpler variant of
LftL-bor-acc-atomic-strong.

The key remaining primitive proof rule is LftL-idx-bor-unnest, and
it simply does not hold in the model defined in Figure 11.12. To obtain
that rule, we need to make some fundamental changes.

11.7 Implementing the full lifetime logic

This completes the model of the restricted lifetime logic, without rebor-
rowing. To verify soundness of the full logic, we need to adjust the model
such that it also validates the following proof rule:62

LftL-idx-bor-unnest
&κ1

(κ′
1,ι)

P ∗&κ2
full([Bor : (κ′1, ι)]1) ≡−∗Nlft &

κ1uκ2
full P

We also have to explain how we can obtain LftL-bor-merge and LftL-
idx-iff, but that will turn out to be fairly straightforward.

Proving this rule will require us to add a third state to our management
of the borrow box: a borrow cannot be just in (have its resources in the
lifetime invariant) or open(q) (have its resources handed out to the client,
with fraction q of the lifetime token left behind as a deposit), but now
it can also be in state rebor(κ): reborrowed to lifetime κ. This state is
similar to open in the sense that the corresponding slice of the borrow box
is currently empty, but the resources are not owned by the client, either—
they are owned by the other lifetime κ. To make sure that resources are
given back in time will require the introduction of a whole new system of
deposits, and we will also heavily exploit the fact that we defined lifetimes
to be finite multisets of atomic lifetimes.

However, before we discuss in more detail how to adjust the model to
support reborrowing, we first reduce the problem to proving a lower-level
rule that talks directly about raw borrows and the multiset structure of
lifetimes.

11.7.1 Reducing the problem

As we have already seen, LftL-idx-bor-unnest is sufficient to derive
LftL-reborrow (see Figure 11.9) and LftL-bor-unnest. This rule
can in turn be reduced further, as indicated in Figure 11.13 where we

61 As already mentioned, LftL-
bor-merge does not hold in the
model as we presented it so far. The
reason is that full borrows internally
quantify over some larger lifetime:
we can easily show merging for
RawBor, but that does not entail
merging for full borrows as the
lifetimes of the two underlying raw
borrows might differ.

62 We have unfolded the borrow
indices into pairs of lifetimes and
slice names.

172

Part II: RustBelt Chapter 11: Lifetime logic

LftL-raw-unnest

LftL-raw-shorten

LftL-idx-bor-unnest LftL-bor-merge

LftL-bor-unnestLftL-reborrow
Figure 11.13: Reborrowing
proof rules (arrows indicate
dependencies)

show a dependency graph of reborrowing rules. At the bottom of this
graph is the following lemma about raw borrows:

κ ⊂ κ′ ∗ BoxSlice(Nbor, P, ι) ∗ RawBor(κ′, [Bor : (κ, ι)]1) ≡−∗Nlft

RawBor(κ′, P) (LftL-raw-unnest)

Here we use ⊂ on lifetimes as multisets, i.e., we demand that κ as a set
of intersected atomic lifetimes is a strict subset of κ′. This means that
κ is actually the longer lifetime as fewer atomic lifetimes are intersected
in it. In other words, this lemma lets us do unnesting if we borrowed
the token for P ’s borrow at lifetime κ at some lifetime κ′ that is strictly
shorter in a syntactic way: not only do we have κ′ v κ, but the underlying
multiset actually directly reflects that κ′ is an intersection of strictly more
lifetimes.63 This is useful because lifetime inclusion is a very extensional
notion, and we have seen how creating a fractured borrow of one lifetime
token at another lifetime can create new inclusion links between lifetimes.
In contrast, syntactic inclusion of multisets is much more “static” and
intensional, and we are going to heavily exploit that in the proof (namely,
we are going to do induction on the size of these multisets).

Before we can show LftL-idx-bor-unnest from LftL-raw-unnest,
we first need to derive a helper lemma that lets us shorten raw borrows:

κ ⊆ κ′ ∗ RawBor(κ, P) ≡−∗Nlft RawBor(κ′, P) (LftL-raw-shorten)

Unlike rules like LftL-bor-shorten, this rule demands that κ′ is syntac-
tically (as a multiset) “shorter” than κ (larger sets intersect more atomic
lifetimes and are hence shorter).

To prove LftL-raw-shorten, we first do case distinction on whether
κ = κ′ or not: if they are equal, we are already done. If they are not
equal, we unfold RawBor to learn the name ι of the borrow slice for this
borrow. We create a new raw borrow of the borrow token for that slice
([Bor : (κ, ι)]1) at lifetime κ′ (and throw away the inheritance as we do
not need it). At this point, our remaining goal is:

κ ⊂ κ′ ∗ BoxSlice(Nbor, P, ι) ∗ RawBor(κ′, [Bor : (κ, ι)]1) ≡−∗Nlft

RawBor(κ′, P)

But this is exactly LftL-raw-unnest, so we are done.
Now we are ready to prove LftL-idx-bor-unnest. We start by

unfolding the indexed borrow and full borrow. The full borrow hides some

63 Since we are dealing with multi-
sets, it could also be the case that
κ′ just contains more intersections
of the same atomic lifetimes that
already make up κ. But that is fine,
all we really need is a well-founded
order on lifetimes.

173

Part II: RustBelt Chapter 11: Lifetime logic

lifetime κ′2 at which the token is actually borrowed. This turns our goal
into:

κ1 v κ′1 ∗ BoxSlice(Nbor, P, ι) ∗
κ2 v κ′2 ∗ RawBor(κ′2, [Bor : (κ′1, ι)]1) ≡−∗Nlft

&κ1uκ2
full P

We need to separately handle the special case that κ′2 is the static lifetime ε
(internally represented as ∅). Borrowing something for the static lifetime
is basically the same as not borrowing it at all, which makes the proof
easy to complete: we can conjure a token (LftL-tok-unit) and use
that to open the borrow.64 Thus we obtain ownership of [Bor : (κ′1, ι)]1.
Since we also own BoxSlice(Nbor, P, ι), we can assemble the two to obtain
RawBor(κ′1, P). Now completing this case of the proof is a matter of
showing κ1 u κ2 v κ′1, which is trivial as we have κ1 v κ′1.

So we are left with the interesting case, where κ′2 is a non-empty
set of atomic lifetimes. First, we use LftL-raw-shorten to shorten
the lifetime of our raw borrow to κ′1 u κ′2. Since lifetime intersection is
defined as multiset union, clearly we have κ′2 ⊆ κ′1 u κ′2, so shortening is
applicable. The next step is to apply LftL-raw-unnest with κ := κ′1
and κ′ := κ′1uκ′2. We know that κ′2 is a non-empty set of atomic lifetimes,
so the strict inclusion in κ ⊂ κ′ is satisfied. At this point, our remaining
goal is:

κ1 v κ′1 ∗ κ2 v κ′2 ∗ RawBor(κ′1 u κ′2, P) ≡−∗Nlft &
κ1uκ2
full P

This goal is easy to show via LftL-bor-shorten, as lifetime intersection
is covariant with respect to lifetime inclusion. Hence we are done showing
LftL-idx-bor-unnest.

As mentioned before, we also need reborrowing to derive LftL-bor-
merge:

&κfull P ∗&κfullQ ≡−∗Nlft &
κ
full(P ∗Q)

Concretely, we will unfold both borrows to obtain raw borrows at poten-
tially different lifetimes κ′ and κ′′. Then we apply LftL-raw-shorten
to reborrow both of them at κ u κ′ u κ′′. The rest of the proof is straight-
forward but tedious: now that we have P and Q borrowed at the same
lifetime, we can get access to the corresponding borrow slices and merge
them using Slice-merge.65

We have now reduced all reborrowing and unnesting to LftL-raw-
unnest. A key advantage of this reduction is that in the following,
we no longer have to consider lifetime inclusion: the only lifetime rela-
tionship left in LftL-raw-unnest is strict inclusion of the underlying
multisets. As we have seen, that is sufficient to derive all the higher-level
rules that are written in terms of lifetime inclusion.

11.7.2 Adjusting the model

In Figure 11.14, we show the full model of the lifetime logic with support
for reborrowing. Tokens and lifetime inclusion did not change at all, so

64 We will actually never close this
borrow again. Borrows at the static
lifetime ε are basically equivalent to
owning the resources directly (under
a .) because tokens for ε can always
be created freely, and recovering our
lifetime token is the only reason for
us to ever close a borrow again (if
we used a non-atomic accessor).

65 The lifetime might in fact be
already dead, in which case we can
use LftL-bor-fake.

174

Part II: RustBelt Chapter 11: Lifetime logic

we are not repeating them. We are also skipping the definition of the
lifetime logic invariant in terms of LftAlive and LftDead, which likewise
is unaffected by reborrows. We have highlighted the parts that changed
relative to Figure 11.10 and Figure 11.12 from the previous section with
an exclamation mark and blue color.

To support LftL-idx-iff, all it takes is to explicitly close indexed
borrows and raw borrows under equivalence of propositions. This can get
a bit tedious in the proofs, but does not impose any difficulties. In the
following, we will ignore this equivalence to focus on the more challenging
aspects of the lifetime logic.

As part of the reborrowing support, we added a third piece of per-
lifetime ghost state: a counter with RA Auth(N)66 that keeps track of
how many outstanding reborrows there are in a lifetime, i.e., how many
borrow slices of this lifetime were created by reborrowing from another,
longer lifetime. We add a short-hand OwnCnt for this, similar to OwnBor
and OwnInh.

In LftBorDeposit, we can see that the fragments of this counter are
owned by the lifetimes that resources have been reborrowed from. Rebor-
rowing is only possible if the reborrowed-to lifetime κ′ is a strictly bigger
multiset, i.e., a strictly smaller lifetime.

The authoritative part is owned by the lifetime itself. A dead lifetime
does not hold any reborrows from other lifetimes (see LftDead), but a
lifetime that is still alive can have any number of reborrows (see LftAlive).
This is handled by LftVs, which is where most of the new complexity arises.
Intuitively, what we want to say here is that there is some number n of
reborrows that we got from other lifetimes, which means there will be n
tokens owned by the LftBorDeposit of all these other lifetimes. Executing
the view shift (which is run when a lifetime ends) will un-do all this
reborrowing, putting all the resources back into the lifetimes they came
from and obtaining ownership of these n tokens. But to be able to do
that, the view shift needs to have access to the resources of these other
lifetimes, which is where things get complicated.

First, a note on syntax: we use P ≡−∗[R]N Q as syntactic sugar for
P ∗ R ≡−∗N Q ∗ R, i.e., R is a frame that is available to the view shift
but is not affected by it. The new definition of LftVs is mutually recursive
with LftAlive, but this is well-defined because the multiset representing
the current lifetime gets strictly smaller, and all our lifetimes are finite
multisets. Only having access to strictly smaller lifetimes (when viewed
as multisets) is sufficient in LftVs as reborrowing can only happen from
a lifetime to a strictly bigger lifetime—so everything we reborrow from
(all the resources LftVs needs to put back to be able to collect all the
reborrow-counting tokens) will be in strictly smaller lifetimes. This is
exactly why we went through the effort of reducing LftL-idx-bor-unnest
to LftL-raw-unnest earlier in this section.

To understand why LftVs contains all the pieces it does, it is best to
look at the proof of LftL-raw-unnest. Afterwards, we will have to
re-consider LftL-begin: that rule also proves how to end a lifetime, and
ending a lifetime just got a lot more complicated through these changes

66 N forms an RA with addition
for composition, and no invalid
elements.

175

Part II: RustBelt Chapter 11: Lifetime logic

Domains (only changed ones).

(!) I ∈ ILft := Auth(Lft fin−⇀ Ag(N× N× N)) (global ghost state to manage lifetimes; name: γi)
(!) BorSt := in | open(q : Frac) | rebor(κ : Lft) (state of a borrow box)

(!) Cnt := Auth(N) (per-lifetime ghost state counting reborrows; γcnt)

Helper functions.

OwnBor(κ, a) := ∃γbor. ◦ [κ← γbor, ,] γi ∗ a : BorBox γbor

OwnInh(κ, a) := ∃γinh. ◦ [κ← , γinh,] γi ∗ a : InhBox γinh

(!) OwnCnt(κ, a) := ∃γcnt. ◦ [κ← , , γcnt]
γi ∗ a :Cnt γcnt

Borrows.

[Bor : (κ′, ι)]q := OwnBor(κ′, ◦ι← (in, q))

(!) &κ(κ′,ι) P := ∃P ′. .�(P ∗−∗ P ′) ∗ κ v κ′ ∗ BoxSlice(Nbor, P
′, ι)

(!) RawBor(κ, P) := ∃ι, P ′. .�(P ∗−∗ P ′) ∗ BoxSlice(Nbor, P
′, ι) ∗ OwnBor(κ, ◦(ι← (in, 1)))

&κfull P := ∃κ′. κ v κ′ ∗ RawBor(κ′, P)

Invariant.

LftInh(κ, PI , s) := ∃E : ℘fin(N).OwnInh(κ, •E) ∗ Box(Ninh, PI ,[ι← s | ι ∈ E])
LftBorDead(κ) := ∃B : ℘fin(N), PB : iProp.OwnBor(κ, •[ι←(in, 1) | ι ∈ B]) ∗

Box(Nbor, PB ,[ι← empty | ι ∈ dom(B)])
(!) LftDead(κ) := ∃PI . LftBorDead(κ) ∗ OwnCnt(κ, •0) ∗ LftInh(κ, PI , full)

bor_to_box(s) :=

full if s = in
empty otherwise

(!) LftBorDeposit(κ,B) := ∗
ι∈dom(B)

True if B(ι) = in
[κ]q if B(ι) = open(q)

OwnCnt(κ′, ◦1) ∗ κ ⊂ κ′ if B(ι) = rebor(κ′)

LftBorAlive(κ, PB) := ∃B : N fin−⇀ BorSt.OwnBor(κ, •[ι←(B(ι), 1) | ι ∈ dom(B)]) ∗

Box(Nbor, PB , bor_to_box 〈$〉 B) ∗ LftBorDeposit(κ,B)
(!) LftVs(κ, PB , PI , n) := ∀I : ℘fin,+(N) fin−⇀ G × G × G.

. PB ∗ [†κ] ≡−∗
 •I γi ∗ ∗

κ′∈dom(I)
κ′⊂κ

LftAlive(κ′)

Nbor

.PI ∗ OwnCnt(κ, ◦n)

(!) LftAlive(κ) := ∃PB , PI , n. LftBorAlive(κ, PB) ∗ LftVs(κ, PB , PI , n) ∗ OwnCnt(κ, •n) ∗
LftInh(κ, PI , empty)

Figure 11.14: Model of the
lifetime logic with reborrowing.

176

Part II: RustBelt Chapter 11: Lifetime logic

to LftVs. However, all the other proof rules still work basically the same,
so we will not reprove them here.

11.7.3 Unnesting of raw borrows

Our goal in this subsection is to prove the unnesting rule for raw borrows:

κ ⊂ κ′ ∗ BoxSlice(Nbor, P, ι) ∗ RawBor(κ′, [Bor : (κ, ι)]1) ≡−∗Nlft

RawBor(κ′, P) (LftL-raw-unnest)

We start by opening the lifetime logic invariant, and observe that κ must
already exist as a lifetime (because we have a raw borrow at that lifetime).
If κ′ is dead, we can easily solve the goal with faking. If it is alive, then
κ must also be alive as it intersects strictly fewer atomic lifetimes. Note
that κ 6= κ′, so at this point we own . LftAlive(κ) ∗ . LftAlive(κ′) and we
can temporarily break the invariant of both lifetimes at the same time.

The proof now consists of four steps:

1. Removing the borrow of [Bor : (κ, ι)]1 from κ′, so that we have full
ownership of RawBor(κ, P).67

2. Opening the borrow slice ι in κ that holds P , putting it into state
rebor(κ′).

3. Using the .P that we now hold to create a new borrow of P in κ′.

4. Patch everything up again in LftVs(κ′, . . .): that view shift runs when κ′

(the shorter of the two lifetimes) ends, and it will take P back out of
the borrow we created and put it back into the original borrow slice ι
in κ that it came from—κ is a longer lifetime so it has not ended yet,
it is not too late to do this. This changes the borrow state of ι back
to in, which is good because that is exactly what we need to repair
the “imbalance” between the borrow and inheritance box of κ′ that we
created in the first step.

Basically, we use this view shift as a “hook” that runs when κ′ ends,
and since κ′ ends before anyone can inherit the borrowed [Bor : (κ, ι)]1
and before κ ends, the hook runs just in time before anything can be
upset by how we rearranged all the resources.

The first step is to remove the borrow slice of κ′ that holds the borrow
token for (κ, ι), which also changes the total content of the borrow box of
κ′ to P ′B,κ′ :

. LftBorAlive(κ′, PB,κ′) ∗ RawBor(κ′, [Bor : (κ, ι)]1) ≡−∗Nlft\Nmgmt

[Bor : (κ, ι)]1 ∗ ∃P
′
B,κ′ . . LftBorAlive(κ′, P ′B,κ′) ∗

. .(PB,κ′ = (P ′B,κ′ ∗ [Bor : (κ, ι)]1))

We start by unfolding RawBor to learn the name of the underlying bor-
row slice, ι′. Combining the borrow token in that definition with the
authoritative state in LftBorAlive, we learn that the current borrow state
is B(ι′) = in, so the slice is full. We use Slice-delete-full to remove
that slice, obtaining . [Bor : (κ, ι)]1.68 We remove ι′ from B and the
authoritative state. LftBorDeposit is unaffected because we just removed

67 We do not just empty that
borrow slice, we really remove it
from the borrow box. Of course,
this creates an imbalance with the
inheritance box; we will use LftVs to
put that borrow token back in place
just in time.

68 Borrow tokens are timeless, so we
can remove the ..

177

Part II: RustBelt Chapter 11: Lifetime logic

a borrow in the in state, which does not have any deposit. Thus we are
done.

In the second step, we open P borrowed at κ. Unlike LftL-bor-acc-
strong, which moves borrows into state open and leaves a fraction of the
lifetime token as a deposit, we will move the borrow into state rebor and
leave a reborrow token of κ′ as a deposit. We can obtain that reborrow
token by increasing n by one in the authoritative state OwnCnt(κ′, •n).

. LftBorAlive(κ, PB,κ) ∗ [Bor : (κ, ι)]1 ∗
BoxSlice(Nbor, P, ι) ∗ OwnCnt(κ′, ◦1) ≡−∗Nlft\Nmgmt

. LftBorAlive(κ, PB,κ) ∗ .P ∗ OwnBor(κ, ◦(ι← (rebor(κ′), 1)))

Based on the borrow token we own, we have B(ι) = in, so the slice is
currently full. We use Slice-empty to empty it and obtain .P , and
update B and the authoritative state of ι to rebor(κ′). To re-prove
LftBorDeposit, this requires us to leave behind OwnCnt(κ′, ◦1).

For the third step, we create a new borrow in κ′ as usual:

. LftBorAlive(κ′, P ′B,κ′) ∗ .P ≡−∗Nlft\Nmgmt

. LftBorAlive(κ′, P ′B,κ′ ∗ P) ∗ RawBor(κ′, P)

This is in fact an instance of Lft-bor’ that we proved during LftL-
borrow, so we can just reuse that lemma.

To close everything again, we need to re-establish the invariants:
. LftAlive(κ) ∗ . LftAlive(κ′). The first conjunct is easy (we did not change
anything big in κ), but in κ′ we changed the total borrow box content
and the number of reborrows, so we need to re-establish LftVs:

. LftVs(κ′, PB,κ′ , PI,κ′ , n) ∗ . .(PB,κ′ = (P ′B,κ′ ∗ [Bor : (κ, ι)]1)) ∗
OwnBor(κ, ◦(ι← (rebor(κ′), 1))) ≡−∗Nlft\Nmgmt

. LftVs(κ′, P ′B,κ′ ∗ P, PI,κ′ , n+ 1)

For this, it is sufficient to prove:

.P ∗ OwnBor(κ, ◦(ι← (rebor(κ′), 1)))

≡−∗
 •I γi ∗ ∗

κ′′∈dom(I)
κ′′⊂κ′

LftAlive(κ′′)

Nbor

[Bor : (κ, ι)]1 ∗ OwnCnt(κ′, ◦1)

To see why, consider that the LftVs we aim to prove starts with resources
.(P ′B,κ′ ∗P) and needs to produce PI,κ′ ∗OwnCnt(κ′, ◦(n+1)). The above
lemma says that we can in a first step turn .P together with the borrow
token that we also have into [Bor : (κ, ι)]1 and a reborrow token (only n
tokens left to go). This means we own .(P ′B,κ′ ∗ [Bor : (κ, ι)]1) which we
know to equal .PB,κ′ ,69 and we have a LftVs to turn that into PI,κ′ and
the remaining reborrow counting tokens.

In order to prove this huge view shift, we first observe that κ ⊂ κ′, so
the view shift “frame” that we have access to contains LftAlive(κ) and

69 This exploits that .(P = Q) −∗
.P = .Q.

178

Part II: RustBelt Chapter 11: Lifetime logic

in particular LftBorAlive(κ,_). We use our borrow token for slice ι of
the κ borrow box to learn that B(ι) = rebor(κ′). This means that in
LftBorDeposit(κ,B), we can find OwnCnt(κ′, ◦1), satisfying the second
separating conjunct of our goal. We update B and the authoritative state
of ι to in, so no deposit is required any more. Our borrow token changes
to OwnBor(κ, ◦(ι ← (in, 1))), satisfying the first separating conjunct of
the goal.70 After applying Slice-fill, borrow box state and borrow state
match again. This uses up .P , but we re-established LftBorAlive(κ,_),
so we are done.

11.7.4 Ending lifetimes in the presence of reborrowing

The part of LftL-begin that is concerned with allocating a new atomic
lifetime works just as before. However, the following lemma expressing
the core of ending that lifetime again needs to be reproven:

LftLInv ∗ [{Λ}]1 ≡−∗Nlft\Nmgmt LftLInv ∗ [† {Λ}] (ALft-end)

The reason this is now more tricky than before is that we changed LftVs.
Using that view shift now requires access to resources of other lifetimes.
Concretely, it requires LftAlive(κ′) for all κ′ ⊂ κ, i.e., all the syntactically
longer lifetimes (consisting of an intersection of fewer atomic lifetimes)
need to be still alive. Ending the atomic lifetime Λ ends not just one
lifetime but all κ 3 Λ that have not been ended yet, and LftVs requires us
to carefully do that in the right order.

We will start this proof bottom-up, with a lemma to end an individual
lifetime κ:

(∀κ′. κ′ ∈ dom(I) ∧ κ′ ⊂ κ⇒ κ′ ∈ Ka) ∗
(∀κ′. κ′ ∈ dom(I) ∧ κ ⊂ κ′ ⇒ κ′ ∈ Kd) ∗ LftAlive(κ) ∗ [†κ]

≡−∗
[
•I γi ∗ ∗

κa∈Ka

LftAlive(κa) ∗ ∗
κ′∈Kd

LftDead(κd)
]
Nlft\Nmgmt

LftDead(κ) (Lft-end)

Here, Ka is a finite set of alive lifetimes that must contain all κ′ that are
strict subsets of κ (and hence syntactically longer lifetimes), and Kd is a
finite set of dead lifetimes that must contain all κ′ that are strict supersets
of κ (and hence syntactically shorter lifetimes). In other words, to end a
lifetime, shorter lifetimes must be already dead and longer lifetimes must
be still alive.

As before, the first step is to show that all borrow slices are full, i.e.,
that B(ι) = in for all ι. We can rule out open(q) because for open borrow
slices, LftBorDeposit contains [κ]q, which leads to a contradiction since we
have [†κ]. For reborrowed slices, intuitively the argument is that we only
ever reborrow to syntactically shorter lifetimes, but those have all been
ended already, and when a lifetime ends it puts its reborrowed resources
back.71 Such slices are in state rebor(κ′), which means we have a deposit
of OwnCnt(κ′, ◦1) and we also learn that κ ⊂ κ′. However, this implies
κ′ ∈ Kd, i.e., κ′ is known to be an already dead lifetime. Thus we have

70 Remember that these tokens
count the number of reborrows
that a lifetime has taken from other
lifetimes. The reason we can get
back that token now is that, as
part of this LftVs, we have put the
reborrow back. This is important
because LftVs must collect all
reborrow tokens; we need to be sure
no reborrows are “forgotten” when
the lifetime is ended.

71 Remember that when we proved
LftVs for LftL-raw-unnest, we did
exactly that: we put the resources
back in the slice they got rebor-
rowed from, and changed the state
of that borrow slice back to in.

179

Part II: RustBelt Chapter 11: Lifetime logic

LftDead(κ′), which implies OwnCnt(κ′, •0). Now we have a contradiction:
it is impossible for the authoritative state to be 0 when we own a fragment
with value 1.72 Thus we know B(ι) = in.

After emptying the borrow box (Box-empty), we obtain .PB and
LftBorDead(κ) as before. Next, we apply LftVs. We have all its precondi-
tions: .PB , [†κ], as well as the frame: the authoritative I and LftAlive for
all syntactically longer lifetimes (as those are all in Ka). We get back the
frame and obtain .PI and OwnCnt(κ, ◦n). Since we also own the matching
OwnCnt(κ, •n) (it is in LftAlive(κ)), we can do a frame-preserving update
that consumes both of them and produces OwnCnt(κ, •0).73 As before,
we fill the inheritance box, obtaining LftInh(κ, PI , full) which completes
the proof of Lft-end.

Next, we show how to end a whole set Ke of lifetimes at once. To this
end, the set Ke must be closed under syntactically shorter lifetimes, i.e.,
larger sets. We cannot end a lifetime and keep some shorter lifetime alive!
Furthermore, in the disjoint set Ka we collect all alive lifetimes that will
not be ended—we need access to all of their invariants for this proof. Also
note that lifetimes in Ke are allowed to be already dead; the lemma will
simply end all the ones that are still alive.

Ke ∩Ka = ∅ ∗ (∀κ ∈ Ke, κ
′ ∈ dom(I). κ′ ⊇ κ⇒ κ′ ∈ Ke) ∗

(∀κ ∈ dom(I). LftAliveIn(A, κ) ∧ κ /∈ Ke ⇒ κ ∈ Ka) ∗(∗
κ∈Ke

LftInv(A, κ) ∗ [†κ]
)

≡−∗
[
•I γi ∗ ∗

κ′∈Ka

LftAlive(κ′)
]
−Nmgmt∗

κ∈Ke

LftDead(κ) (Lfts-end)

The key to this proof will be to end the lifetimes in the right order so that
we can satisfy the requirements of Lft-end: that shorter lifetimes are
already dead and longer ones are still alive. Formally, we perform induction
over the metric |Ke|, i.e., over the size of the kill-set Ke. We start by
checking whether Ke contains any lifetimes κ such that LftAliveIn(A, κ).
If no, we have nothing to do—all to-be-ended lifetimes are already ended.
Otherwise, we select a minimal element κ ∈ {κ ∈ Ke | LftAliveIn(A, κ)}
according to the relation ⊂, i.e., we pick some lifetime such that no longer
lifetime is still alive and should be ended. This relation is acyclic, so such
an element has to exist. We will first end all the other lifetimes and then
end κ: “longest lifetime last”.

We choose K ′e := Ke \ {κ} and K ′a := Ka ∪{κ} as kill-set and alive-set
for the induction hypothesis. Clearly, K ′e is smaller than Ke, so the
induction is well-founded. To actually apply the induction hypothesis,
we have to show that K ′e and K ′a also satisfy the other preconditions.
Clearly, they are still disjoint. Ke is also still closed under larger sets of
atomic lifetimes because we removed a minimal element: κ is not only
minimal in {κ ∈ Ke | LftAliveIn(A, κ)}, it is in fact minimal in Ke (i.e.,
when considering all to-be-ended lifetimes, not just the alive ones). This

72 In other words, it is impossible
to have an outstanding reborrow
to an already dead lifetime. This
argument is the reason why the
borrow counting tokens exist in the
first place.

73 This is where we certify that we
have put back all reborrows that
we might have taken from other
lifetimes. The reason this is possible
is that LftVs is defined to produce a
number of reborrow tokens exactly
matching the total number n
that LftAlive authoritatively keeps
track of.

180

Part II: RustBelt Chapter 11: Lifetime logic

is because all lifetimes longer than κ are still alive since κ is still alive.
Furthermore we have to show that K ′a contains all alive lifetimes. So let
us assume that there is some κ′ ∈ K ′e that is alive. Either κ′ /∈ Ke (so
we are done by our assumption about Ka), or κ′ = κ (and we are done
because κ ∈ K ′a). We also need LftAlive(κ) (since we added κ in K ′a),
which we have because we specifically picked κ to be alive. After invoking
the induction hypothesis, we have that all lifetimes in K ′e are dead. To
complete our goal, all that is left to do is end κ.

To this end, we invoke Lft-end. Our Ka satisfies the requirement of
containing all κ′ ⊂ κ, because κ is minimal in Ke so κ′ /∈ Ke. We also
have LftAlive for all these liftimes. For Kd we pick K ′e, for which we have
LftDead because we just ended them all. It contains all supersets of κ
because κ ∈ Ke and Ke is closed under supersets. Thus all assumptions
of Lft-end are met, and we are done proving Lfts-end.

Finally, we can come back to proving ALft-end. Based on the token we
own, we can switch the status of Λ in A to inr(), obtaining [†Λ]. Now we
apply Lfts-end with

Ke := {κ ∈ dom(I) |Λ ∈ κ}
Ka := {κ ∈ dom(I) | κ /∈ Ke ∧ LftAliveIn(A, κ)}

Ke is clearly closed under supersets. And by definition, everything alive
and not to be ended is in Ka. From [† {Λ}] we can get the corresponding
token [†κ] for all κ ∈ Ke, and we defined everything in Ka to be alive.
We thus satisfy all requirements of Lfts-end, which finishes the proof.

181

Chapter 12

Semantic type system soundness

In §10, we defined the semantic interpretation (size, ownership predicate,
and in some cases sharing predicate) for some of the key λRust types.
To make these definitions fully precise, we had to develop the lifetime
logic (§11). Now we can get back to the type system and complete the
semantic model of types and all the other type system components. Once
the semantic model is complete, we can verify the following key theorem
relating our syntactic and semantic type systems:

Theorem 4 (Fundamental theorem of logical relations).
For any inference rule of the type system given in §9, when we replace all
occurrences of ` by |= (replacing syntactic judgments by their semantic
interpretation), the resulting Iris theorem holds.

One important corollary of the fundamental theorem is that if a judg-
ment can be derived syntactically, then it also holds semantically.1 How-
ever, Theorem 4 is much stronger than this, because we can use it to glue
together safe and unsafe code. Given a program that is syntactically
well-typed except for certain components that are only semantically (but
not syntactically) well-typed, the fundamental theorem tells us that the
entire program is semantically well-typed.

On its own, the fundamental theorem is not terribly useful yet, as it
just relates two different ways to “type” a program. This is where the
adequacy theorem comes in, which relates semantic typing to program
behavior :

Theorem 5 (Adequacy). Let f be a λRust function such that ∅; ∅ | ∅ |=
f |=x. x C fn() → Π[] holds. When we execute f with the default
continuation (a no-op), no execution reaches a stuck state, i.e., a state
where any thread cannot make progress.

In particular, the adequacy theorem guarantees that a semantically
well-typed program is memory and thread safe: it will never perform any
invalid memory access and will not have data races.

Put together, these theorems establish that, if the only code in a λRust

program that is not syntactically well-typed appears in semantically well-
typed libraries, then the program is safe to execute. In other words, to
ensure safety of a whole Rust program, we only need to verify its unsafe
libraries.

1 This follows trivially by induction
on the derivation tree of the judg-
ment. Every step in that tree is a
proof rule which can be mirrored
semantically using the fundamental
theorem.

183

Part II: RustBelt Chapter 12: Semantic type system soundness

Semantic model of lifetimes and lifetime contexts.

JκK : Lft
JαK := α

JstaticK := ε

JEK : iProp
J∅K := True

JE, κ ve κ
′K := JκK v Jκ′K ∗ JEK

JLK : Fract→ iProp
J∅K(q) := True

JL, κ vl κK(q) := ∃κ′. JκK = κ′ u (uκ′′∈JκKκ
′′) ∗ [κ′]q ∗�

(
[κ′]1 .≡−∗∅ Nlft [†κ′]

)
∗ JLK(q)

Semantic model of lifetime judgments.

E; L |= κ alive := �∀q. JEK −∗
(
JLK(q) ∝Nlft,Nrust q′. [JκK]q′

)
E; L |= κ1 v κ2 := �∀q. JLK(q) −∗ �(JEK −∗ Jκ1K v Jκ2K)

E1; L1 |= E2 := �∀q. JLK(q) −∗ �(JE1K −∗ JE2K)

Figure 12.1: Semantic models
of lifetimes, lifetime contexts,
and judgments.

Chapter outline. To complete our semantic model and show these two
theorems, we start by giving a semantic interpretation of the λRust lifetime
contexts (E and L) and the lifetime-related judgments (such as lifetime
inclusion) in terms of the lifetime logic, and verifying that they properly
model the syntactic judgments (§12.1). Then we finish the job that we
started in §10 and give a semantic interpretation for every built-in type
of λRust (§12.2). Next, we have to introduce the mechanism of non-atomic
invariants (§12.3), which is required to verify non-thread-safe types with
interior mutability (Cell, RefCell and Rc), as we will see in §13. Finally,
we can give a semantic interpretation of the type system judgments (§12.4).
With the right definitions, it will turn out that Theorem 5 is actually easy
to prove.2 Showing Theorem 4, on the other hand, requires a proof for
every single typing rule; we will look at a few representative examples
in §12.5.

12.1 Semantically modeling λRust lifetime judgments

As a simple example for how to define a semantic model of type system
judgments and verify Theorem 4, we start by looking at the lifetime
contexts E and L and the three lifetime-related judgments: liveness,
lifetime inclusion, and external lifetime context satisfiability. The relevant
definitions are all given in Figure 12.1.

Interpreting lifetime contexts. Both lifetime contexts are basically a
big separating conjunction over the interpretation of each element in

2 This is common for the semantic
approach to type soundness.

184

Part II: RustBelt Chapter 12: Semantic type system soundness

the context. In the external lifetime context E, each element κ ve κ
′

corresponds directly to a lifetime inclusion in the lifetime logic.
The local lifetime context L is slightly more involved. We say that

κ vl κ means that κ is the intersection of all lifetimes in κ further
intersected with one more lifetime κ′. The purpose of κ′ is to be able to
end κ: for κ′ we own the lifetime token and we also own the view shift
(produced by LftL-begin) that lets us end this lifetime. The fraction q
of the lifetime that we own is given as a parameter. This fraction will
be universally quantified in the models of the lifetime judgments so that
multiple judgments can be used at the same time by splitting the context
(using JLK(q1 + q2) ∗−∗ JLK(q1) ∗ JLK(q2)).

Finally, we define the static lifetime in λRust to correspond to the ε
lifetime of the lifetime logic, which ensures that static goes on forever
and cannot be ended.

Interpreting lifetime judgments. With the semantic model of lifetime
contexts in place, we can proceed by giving a semantic model to the three
judgments that operate on these contexts. All of these interpretations are
made persistent with an explicit � modality, to ensure that the proof of
a judgment does not implicitly use any non-duplicable resources.

Liveness (E; L |= κ alive) is the most straightforward of the judgments.
We say that a lifetime κ is alive in some context if we can prove a symmetric
accessor that provides some fraction of the token for that lifetime.

Lifetime inclusion in λRust (E; L |= κ1 v κ2) is interpreted using the
notion of lifetime inclusion provided by the lifetime logic, as one would
expect. What is subtle about the semantic model here is the second �
modality: remember that the semantic interpretation of κ vl κ in the
local lifetime context says that we own fraction q of the token for κ′,
where κ is obtained by intersecting κ′ with the lifetimes in κ. This means
that the local lifetime context is not persistent. However, for our semantic
model of inclusion, we only want a proof of inclusion to be able to use the
persistent parts of the context (notably, the fact that κ is κ′ intersected
with κ). This is expressed by putting the persistence modality � around
the conclusion, which makes sure that only persistent resources can be
used to prove the remaining goal. We do this to ensure that using this
lemma does not “use up” ownership of JLK(q).3

Similarly, external lifetime context satisfiability (E1; L1 |= E2) is defined
as JE2K following from JE1K, making use of only the persistent parts
of JLK(q).

The fundamental theorem for lifetime judgments. We now have all the
pieces needed to show Theorem 4 for lifetime judgments: for each of the
rules of these three judgments, we can show the corresponding entailment
of their semantic interpretations in Iris.

First, we consider lifetime inclusion. The typing rules for lifetime
inclusion in λRust are given in Figure 9.5 on page 115 (except for transitivity,
which is on page 125 in §9.4). Thus we have to prove the Iris theorems
shown in Figure 12.2.

3 This exploits �-wand-keep
(page 69): when we have P −∗ �Q,
applying that magic wand does not
“use up” P . To avoid the modality,
we could have used JLK(q) ∗ JEK −∗
JLK(q) ∗ JEK ∗ (Jκ1K v Jκ2K) as the
semantic interpretation, but that
would be much more annoying to
use in Coq proofs as we would have
to constantly use up and re-acquire
ownership of JLK(q) and JEK.

185

Part II: RustBelt Chapter 12: Semantic type system soundness

Lincl-static-sem
E; L |= κ v static

Lincl-local-sem
κ vl κ ∈ L κ′ ∈ κ

E; L |= κ v κ′

Lincl-extern-sem
κ ve κ

′ ∈ E
E; L |= κ v κ′

Lincl-refl-sem
E; L |= κ v κ

Lincl-trans-sem
E; L |= κ v κ′ E; L |= κ′ v κ′′

E; L |= κ v κ′′

Figure 12.2: Semantic rules for
λRust lifetime inclusion.

To show Lincl-refl-sem, we only need lifetime inclusion to be reflexive
(LftL-incl-refl on page 142). Lincl-static-sem is a consequence of
LftL-tok-unit (which says that we can always create tokens “out of
thin air” for the static lifetime4) and LftL-end-unit (which says that
a dead token for the static lifetime leads to a contradiction). Lincl-
extern-sem is shown easily by induction over the context E. Similarly,
Lincl-local-sem follows by induction over L; the � modality in the goal
forces us to “throw away” most of JLK(q), but not before we remembered
the (persistent) fact that κ = κ′ u . . ., from which inclusion follows easily.

Finally, we come to transitivity (Lincl-trans-sem). This is the only
one of these rules that also makes semantic assumptions. As a consequence,
showing semantic versions of all syntactic proof rules like we are doing
here is stronger than merely showing something like “syntactic inclusion
implies semantic inclusion”:

Lincl-sem
E; L ` κ v κ′

E; L |= κ v κ′

This rule is a consequence of the five lemmas we are proving (by induction
on the derivation of E; L ` κ v κ′), but not vice versa: Lincl-trans-sem
does not follow from this rule because its semantic assumptions (|=) are
weaker than the syntactic precondition (`) of Lincl-sem.

Actually showing Lincl-trans-sem is not difficult, but a bit tedious.
After unfolding the model of inclusion, we have to prove the following:

�
(
∀q. JLK(q) −∗ �(JEK −∗ JκK v Jκ′K)

)
∗

�
(
∀q. JLK(q) −∗ �(JEK −∗ Jκ′K v Jκ′′K)

)
−∗

�∀q. JLK(q) −∗ �(JEK −∗ JκK v Jκ′′K)

We show the proof outline in Figure 12.3. In the end, this boils down to
LftL-incl-trans, but along the way we have to make use of �-wand-
keep which lets us keep JLK(q) when applying the first magic wand so
that we can use it again for the second wand.5

The other two judgments, liveness and external lifetime context satisfi-
ability, are handled in just the same way, with one Iris lemma per λRust

proof rule. But none of these proofs are very interesting, so we move on
to (re-)considering the types of λRust and the judgments relating them.

4 Remember that JstaticK = ε.

5 We could alternatively complete
the proof by splitting JLK(q), but
we choose this opportunity to
showcase this very useful and often
overlooked interaction of magic
wand and persistence.

186

Part II: RustBelt Chapter 12: Semantic type system soundness

{(
(1) �∀q. JLK(q) −∗ �(JEK −∗ JκK v Jκ′K)

)
∗
(
(2) �∀q. JLK(q) −∗ �(JEK −∗ Jκ′K v Jκ′′K)

)}
Goal: �∀q. JLK(q) −∗ �(JEK −∗ JκK v Jκ′′K)
Introduce persistence modality (�-intro, page 69) and assumptions of magic wand.
{JLK(q)}
Instantiate (1) with q := q and JLK(q), which we can keep using �-wand-keep.
{JLK(q) ∗�(JEK −∗ JκK v Jκ′K)}
Instantiate (2) with q := q and JLK(q).{(

(3) �(JEK −∗ JκK v Jκ′K)
)
∗
(
(4) �(JEK −∗ Jκ′K v Jκ′′K)

)}
Goal: �(JEK −∗ JκK v Jκ′′K)
Introduce persistence modality (�-intro) and assumptions of magic wand.
{JEK}
Instantiate both (3) and (4) with JEK.
{JκK v Jκ′K ∗ Jκ′K v Jκ′′K}
Lifetime inclusion is transitive (LftL-incl-trans).
Goal: JκK v Jκ′′K

Figure 12.3: Proof outline for
Lincl-trans-sem.12.2 Semantically modeling λRust types

In §10, we started defining semantic models of some key λRust types.
However, we did not go into the sharing predicate for owned pointers and
mutable references; as it turns out, those are somewhat more complicated
than one would expect. We also did not go through each type in the type
system—however, most of the remaining types are not very interesting to
look at. In this section, we will close those gaps.

Figure 12.4 repeats the semantic domain of types that we ended up
with in §10. Defining a semantic type means picking an element of that
domain. Figure 12.5 gives the semantic interpretation of each type in the
type system, including those we already saw in §10. In the following, we
go over the interesting aspects of those definitions that we have not yet
considered.

Simple types. As discussed in §10.4, many of our types are what we call
“simple types”, which means they have size 1 and are Copy. For these
types, it suffices to define a persistent predicate Φ that defines when a
value v satisfies the type invariant in a given thread t. For example, values
of type bool are either true or false, and shared references are defined
by the sharing predicate of the referenced type τ (which is persistent by
ty-shr-persist). Given such a predicate, the SimpleType constructor (de-
fined at the bottom of Figure 12.5) determines both ownership and sharing
predicate in terms of Φ. The ownership predicate is entirely straightfor-
ward; the sharing predicate makes use of fractured borrows (§11.3) to
express that the pointed-to value cannot change.

We need to verify that SimpleType satisfies the conditions on semantic
types as defined in Figure 12.4. Most of them are trivially satisfied, except
for ty-share, where we need to prove:

&κfull
(
∃v. ` 7→ v ∗ Φ(t, v)

)
∗ [κ]q ≡−∗Nlft

∃v. &κfrac(λq. `
q7−→ v) ∗ .Φ(t, v) ∗ [κ]q

187

Part II: RustBelt Chapter 12: Semantic type system soundness

PreSemType :=

size : N,
own : TId× List(Val)→ iProp,
shr : Lft× TId×Loc→ iProp

SemType :=

T ∈ PreSemType

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
∀t, v. T.own(t, v) −∗ |v| = JT K.size

)
∧ (ty-size)(

∀κ, t, `. persistent(JτK.shr(κ, t, `))
)
∧ (ty-shr-persist)(

∀κ, κ′, t, `. κ′ v κ ∗ JτK.shr(κ, t, `) −∗ JτK.shr(κ′, t, `)
)
∧

(ty-shr-mono)(
∀κ, t, `.

(
&κfull

(
∃w. ` 7→ w ∗ JτK.own(t, w)

)
∗ [κ]q

)
≡−∗Nlft(

JτK.shr(κ, t, `) ∗ [κ]q
))

(ty-share)

Figure 12.4: Semantic domain
of types.

We first use freezing (LftL-bor-exists, page 142) to swap the existential
quantifier to the outside of the full borrow.6 Next, we split &κfull(` 7→
v ∗ Φ(v)) at the separating conjunction (LftL-bor-split). We use
[κ]q to briefly open the borrow of Φ(t, v) to obtain a proof of .Φ(t, v)
(remember Φ is persistent, and . preserves persistence, so we can grab a
copy). Finally, we turn the full borrow of ` 7→ v into a fractional borrow
(LftL-bor-fracture, page 146), and we are done.7

SimpleType is also used to define 1, the type representing an uninitial-
ized block of memory of size 1. The interpretation of the general n is
then defined as the product of n times 1.

Delayed sharing for owned pointers. We have already talked about the
ownership predicate for owned pointers (ownn τ) in §10.3. In contrast to
the ownership predicate, the sharing predicate is quite complicated:

Jownn τK.shr(κ, t, `) := ∃`′. &κfrac(λq. `
q7−→ `′) ∗

�
(
∀q. [κ]q −∗ |VNshr∪Nlft Nlft . |VNlft Nshr∪Nlft(
JτK.shr(κ, t, `′) ∗ [κ]q

))
We call this pattern (the part after the first separating conjunction)
“delayed sharing”.8 But why is it even needed? The reasons are subtle.
The sharing predicate we would naively want to use is as follows:

Jownn τK.shr(κ, t, `) := ∃`′. &κfrac(λq. `
q7−→ `′) ∗ . JτK.shr(κ, t, `′)

This expresses that a shared borrow of an owned reference is a pointer to a
pointer, and the outer pointer is handled just like a simple type—through
a fractional borrow. While the owned pointer is shared, it cannot be
mutated to point to something else. The second part says that what it
points to is a valid shared instance of τ .9

However, if we went for this simple definition, we would find ourselves
unable to prove ty-share. To see why, let us unfold (and slightly simplify)

6 This is where the memory pointed
to by the shared reference becomes
read-only.

7 The remaining borrow of Φ(t, v) is
thrown away.

8 The name will become clear soon.

9 The recursive occurrence is
guarded by a . to account for
recursive types, as discussed in
§10.3.

188

Part II: RustBelt Chapter 12: Semantic type system soundness

JboolK := SimpleType(λ , v. v = true ∨ v = false)
JintK := SimpleType(λ , v. ∃z. v = z)

Jownn τK :=

size := 1,
own := λt, v. ∃`. v = [`] ∗ .

(
∃w. ` 7→ w ∗ JτK.own(t, w)

)
∗

Dealloc(`, JτK.size, n),
shr := λκ, t, `. ∃`′. &κfrac(λq′. `

q′
7−→ `′) ∗

�
(
∀q. [κ]q −∗ |VNshr∪Nlft Nlft . |VNlft Nshr∪Nlft(
JτK.shr(κ, t, `′) ∗ [κ]q

))

J&κmut τK :=

size := 1,

own := λt, v. ∃`. v = [`] ∗&JκK
full
(
∃w. ` 7→ w ∗ JτK.own(t, w)

)
,

shr := λκ′, t, `. ∃`′. &κ
′

frac(λq. `
q7−→ `′) ∗

�
(
∀q. [JκK u κ′]q −∗ |VNshr∪Nlft Nlft . |VNlft Nshr∪Nlft(
JτK.shr(JκK u κ′, t, `′) ∗ [JκK u κ′]q

))

J&κshr τK := SimpleType(λt, v. ∃`. v = ` ∗ JτK.shr(JκK, t, `))

JΠτK :=

size :=
∑
i

Jτ iK.size,

own := λt, v. ∃v. v =
∑
i

vi ∗∗
i

Jτ iK.own(t, vi),

shr := λκ, t, `.∗
i

Jτ iK.shr(κ, t, `+
∑
j<i

Jτ jK.size)

JΣτK :=

size := 1 + max
i

JτiK.size,

own := λt, v. ∃i, v′, vpad. v = [i] ++ v′ ++ v′′ ∗ Jτ iK.own(t, v′) ∗
|vpad| = 1 + max

j
Jτ jK.size,

shr := λκ, t, `. ∃i. Jτ iK.shr(κ, t, `+ 1) ∗&κfrac
(
λq. `

q7−→ i ∗
(∃vpad. `+ 1 + Jτ iK.size q7−→ vpad ∗ Jτ iK.size + |vpad| = max

j
Jτ jK.size)

)

J 1K := SimpleType(λ , .True)
J nK := Π[1, . . . , 1] of length JnK

J∀α. fn(ϝ : E; τ)→ τK := SimpleType
(
λ , v. ∃f, x, k, F. v = funrec f(x) ret k := F ∗ .∀κ, κϝ, vk, v.

�
(
E; ϝ vl [] | k C cont(ϝ vl [];x. x C own τ);x C own τ |= F [funrec f(x) ret k := F/f, v/x, vk/k]

))
JµT. τK := fix(λT. JτK)

where

SimpleType(Φ) :=

size := 1,
own := λt, v. ∃v. v = [v] ∗ Φ(t, v),
shr := λκ, t, `. ∃v. &κfrac(λq. `

q7−→ v) ∗ .Φ(t, v)

Figure 12.5: Interpretations
of primitive types and type
constructors.

189

Part II: RustBelt Chapter 12: Semantic type system soundness

the assumptions we are granted in that proof:

&κfull
(
∃`′. ` 7→ `′ ∗ .

(
∃w. `′ 7→ w ∗ JτK.own(t, w)

)
∗ . . .

)
The first points-to permission (7→) comes from the statement of ty-
share, the second is from the definition of Jownn τK.own. We omitted
the handling of the deallocation permission. After some amount of freezing
and splitting of the borrow (LftL-bor-exists and LftL-bor-split),
we arrive at:

. . . ∗&κfull .
(
∃w. `′ 7→ w ∗ JτK.own(t, w)

)
∗ . . .

At this point, to make progress in the proof, we need to use ty-share
for τ to start sharing of the data the owned pointer points to. Given our
sharing predicate above, which says that a shared owned pointer points to
a shared τ , this is exactly what we would expect: when we start sharing
the owned pointer, we have to recursively start sharing what it points to.

The trouble is that we cannot use ty-share here. If we compare what
we have with what ty-share needs, we can see that there is a . in the
way: if we had a way to strip the ., we could complete the proof, but sadly
that is impossible. Fundamentally, this is because . does not commute
with the update modality (i.e., . ˙|VP does not imply ˙|V.P).

The solution, then, is to “delay” executing ty-share: delayed sharing.
We replace . JτK.shr(κ, t, `′) by

�
(
∀q. [κ]q −∗ |VNshr∪Nlft Nlft . |VNlft Nshr∪Nlft

(
JτK.shr(κ, t, `′) ∗ [κ]q

))
This “view shift that takes a step” expresses that at any time, given a proof
that κ is still alive, we can obtain the inner sharing one step later. Where
. JτK.shr(κ, t, `′) says that we own the sharing predicate for τ (after a step
of computation), the delayed sharing pattern says that we can run some
updates (that take a step of computation) to own the sharing predicate
for τ .10 The actual sharing of τ (i.e., applying ty-share) happens when
these updates are run for the first time. Effectively, when we share a
data structure with lots of nested owned references, sharing of the inner
parts (the ones behind a pointer indirection) is done lazily. Only when
someone actually accesses the inner pointer is the “view shift that takes
a step” executed to start sharing the inner part.11 At that point, the .
is no longer a problem because dereferencing that pointer requires the
program to take a step.

Coming back to the proof of ty-share for Jownn τK, what we need to
complete the proof is the following lemma to “initialize” delayed sharing:

&κfull .
(
∃w. `′ 7→ w ∗ JτK.own(t, w)

)
−∗

�
(
∀q. [κ]q −∗ |VNshr∪Nlft Nlft . |VNlft Nshr∪Nlft

(
JτK.shr(κ, t, `′) ∗ [κ]q

))
(own-share)

First of all, notice that, without the �, this proof would be trivial. We
could introduce all our assumptions, open the full borrow with LftL-
bor-acc-strong, then strip away the . from both the assumption and
the goal (we may take a step, after all), close the borrow again without

10 This is similar to the difference in
programming between having some
data and having a thunk that can
compute the data on-demand.

11 We will see this in action in
Figure 12.11 on page 203.

190

Part II: RustBelt Chapter 12: Semantic type system soundness

the later in the borrowed proposition, and finish by applying ty-share.
However, the � modality forces us to throw away non-persistent assertions
before we go on introducing assumptions (�-intro on page 69). And
this makes sense: after all, sharing is persistent for a reason! The Rust
equivalent of &shr own τ is the type &Box<T>, which is duplicable, and
whoever accesses it first will be the one to trigger the “delayed sharing” of
the inner content. We thus have to arrange a little protocol making sure
that even if two threads race for sharing the inner content, both threads
have access to the resources they need.

Roughly speaking, the plan to prove own-share is as follows: we
create an invariant with content

I := JτK.shr(κ, t, `′) ∨&κfull .
(
∃w. `′ 7→ w ∗ JτK.own(t, w)

)
Clearly, I initially holds, as we can easily satisfy the right conjunct.
Because invariants are persistent, the � is no longer a problem. For a
moment, let us assume we could open this invariant and obtain I (rather
than . I, which is what we actually get instead). We now distinguish two
cases:

1. I is in the left conjunct. In this case, somebody else already started
the sharing (performed the steps described in the second case); all we
have to do is make a copy of the JτK.shr(κ, t, `′) that they put into the
invariant and be done.

2. I is in the right conjunct. This means we are responsible for initiating
sharing of this instance of τ . In this case, we proceed as sketched above,
when we ignored the �. The key step is described by the following
lemma:

&κfull .P ∗ [κ]q −∗ |VNlft
. |VNlft

(
&κfull P ∗ [κ]q

)
(LftL-bor-later)

This can be proven with LftL-bor-acc-strong by opening the
borrow (obtaining . .P), taking a step (which removes a . from the
goal, but also means we now own .P), and then picking Q := P when
using the closing part of LftL-bor-acc-strong. After this, we can
run ty-share, obtaining JτK.shr(κ, t, `′) which we use to satisfy I

again (this time in the left conjunct) and to satisfy the conclusion of
own-share.12

The actual proof is somewhat more complicated because we do not ac-
tually obtain I from our invariant, we obtain . I. The first case still works
easily: after all, own-share concludes in a “view shift that takes a step”,
so we can use that step to strip away the later from our . JτK.shr(κ, t, `′).
The second case is the problematic one, and to fix it, we have to actually
change I. We have to find a way to put the full borrow into I without
adding an extra later in front of it. This is exactly what indexed borrows
(§11.5) let us do: LftL-bor-idx says that every full borrow can be split
into a persistent part (the “indexed borrow”) and a timeless part (the
“token”). The timeless part can be put into the invariant without a .
being added. Thus, I looks as follows:

Ii := JτK.shr(κ, t, `′) ∨ [Bor : i]1

12 Due to the way the masks are
written in own-share, we are
allowed to first change the mask
from Nshr ∪ Nlft to Nlft, then apply
the step-taking LftL-bor-later,
and then close the invariant again,
i.e., we can keep the invariant open
for the entire step. That is why
Nshr only occurs in the first and last
mask, not in the two intermediate
ones.

191

Part II: RustBelt Chapter 12: Semantic type system soundness

The first step in proving own-share is to show that the full borrow can
be turned into the following:

Ii
Nshr ∗&κi .

(
∃w. `′ 7→ w ∗ JτK.own(t, w)

)
These propositions are both persistent, so we can keep them and remove
the � modality from our goal. The rest of the proof proceeds as before,
except that the second case uses timelessness to remove the later in front
of [Bor : i]1, and then uses LftL-bor-idx again to put the indexed
borrow and the token back together and obtain the full borrow (without
an extra ., i.e., with just the . inside the borrow that we started out
with).

Delayed sharing for mutable references. Ownership of mutable references
(&κmut τ) is very similar to that of owned pointers, except that of course
everything is borrowed (and there is no deallocation permission). We
have already seen this in §10.3.

Likewise, sharing of mutable references is also very similar to that
of owned pointers. We use the same delayed sharing scheme for the
same reason—the following “obvious” sharing predicate fails to satisfy
ty-share:

J&κmut τK.shr(κ′, t, `) := ∃`′. &κfrac(λq. `
q7−→ `′) ∗ . JτK.shr(JκK u κ′, t, `′)

The only difference to Jownn τK.shr is that mutable references have a
lifetime parameter κ, which we take into account by saying that the
referenced τ is shared for the intersection of both lifetimes in &κ

′

shr &κmut τ .
To prove ty-share, we need a lemma to initiate sharing of mutable

references:

&κ
′

full&κfull
(
∃w. `′ 7→ w ∗ JτK.own(t, w)

)
−∗

�
(
∀q. [JκK u κ′]q −∗ |VNshr∪Nlft Nlft . |VNlft Nshr∪Nlft(

JτK.shr(JκK u κ′, t, `′) ∗ [JκK u κ′]q
))

(mut-share)

This lemma corresponds to own-share for owned pointers, and indeed
the proof is very similar. We turn our assumptions into the following
persistent resources in order to be able to use �-intro:

JτK.shr(JκK u κ′, t, `′) ∨ [Bor : i]1
Nshr ∗

&κ
′

i &κfull
(
∃w. `′ 7→ w ∗ JτK.own(t, w)

)
We perform the same case distinction as before, and there is no difference
for the left conjunct. If we are in the right conjunct, instead of LftL-
bor-later we use LftL-bor-unnest (page 155).

Products and sums. The product and sum types contain no major sur-
prises. In §10.3 we saw the ownership and sharing predicates for pairs
(binary products); this generalizes directly to n-ary products.

For sums (Στ), we define the representation in memory to be a single
location storing the tag (indicating which variant of the sum is being used),

192

Part II: RustBelt Chapter 12: Semantic type system soundness

followed by the data that matches the active variant, followed potentially
by some junk data (typically called “padding”) to make sure that the size
of the sum is the same no matter the active variant. These components
are called i, v′ and vpad in the ownership predicate, respectively.

When a sum is shared, the tag is governed by a fractured borrow just
like a simple type (so it can be read by anyone without synchronization,
but cannot be mutated). At location `+ 1, we expect a shared instance
of the active variant i. And moreover, we also have a fractured borrow of
the padding. The padding is just memory of the right length (regardless
of its contents). We need this to be able to show that a sum is Copy when
all its variants are: to make a copy, we have to be able to read the entire
memory that stores the sum, including the padding.

Uninitialized memory (n) is defined as being any memory of the
right size. To simplify the verification of T-uninit-prod, we define
uninitialized memory of size n as n times a single uninitialized location,
but we also show the following theorem:

uninit-own
J nK.own(t, v) ∗−∗ |v| = n

Function types. A function is semantically well-typed when, given se-
mantically well-typed arguments, it can be called safely and returns a
semantically well-typed result—this is the characteristic function case
of logical relations. Expressing this is somewhat cumbersome due to
all the contexts that are involved, so we reuse the notion of a semanti-
cally well-typed function body which we will define in §12.4:13 a function
value is well-typed if its body is well-typed after substituting well-typed
arguments.

Recursive types. The interpretation of recursive types (µT. τ) is decep-
tively simple: τ contains T as a free variable, so it can be semantically
interpreted as a function SemType→ SemType. To interpret the recursive
type, we “just” take a fixed point of that function.

Of course, the devil is in the detail of why such a fixed point even
should exist: as discussed in §10.3, well-definedness of recursive types
rests on the type system restriction that each recursive use of T must be
guarded by a pointer type. When interpreting types, we ensure that all
pointer type constructors in turn guard their type arguments with the .
modality—this is why there is a . in the interpretation of owned pointers
and function types. For such functions whose recursive occurrences are
guarded by a ., Iris guarantees the existence of a unique fixed point. We
discussed the more subtle aspects of this at the end of §10.4.

Now that we have given semantic meaning to all λRust types, the next step
is to give semantic meaning to the typing judgments. However, before we
can do that, we have to introduce the notion of non-atomic invariants: to
verify Cell in §13.1, we need to make use of non-atomic invariants, and
that means we need to prepare the semantic typing judgments to enable
the use of these invariants.

13 It may seem like this introduces
a cycle into our semantic model,
but that is not actually the case:
semantically well-typed function
bodies can be defined for typing
contexts containing arbitrary
semantic types, without referring to
the specific interpretations we are
defining here.

193

Part II: RustBelt Chapter 12: Semantic type system soundness

NAInv-persist
persistent(NaInvp.N (P))

NAInv-tok-timeless
timeless([NaInv : p.N])

NAInv-new-pool
True ≡−∗⊥ ∃p. [NaInv : p.>]

NAInv-tok-split
[NaInv : p.E1] E2] ∗−∗ [NaInv : p.E1] ∗ [NaInv : p.E2]

NAInv-new-inv
.P ≡−∗N NaInvp.N (P)

NAInv-acc
N ⊆ E

NaInvp.E(P) −∗
(
[NaInv : p.E] ∝N [NaInv : p.E \ N] ∗ .P

)
Figure 12.6: Proof rules for
non-atomic invariants.12.3 Interlude: Non-atomic invariants and borrowing

To model Cell, we will have to define a sharing predicate that grants
everyone mutable access to some area of memory. Usually we would of
course use an Iris invariant to share ownership of this memory, but Cell
actually uses non-atomic memory accesses, and invariants can only be
used to reason about atomic instructions. On the other hand, we only need
access to this state from within a single thread, while normal invariants are
always accessible to all threads.14 This combination of features—invariants
that can be opened for many instructions but only from a single thread—is
provided by non-atomic (or “thread-local”) invariants.

Non-atomic invariants are very similar to the “atomic” Iris invariants
that we have already seen in §5.1, except that opening them does not
change the current mask. Instead, they come with their own tokens that
are used to ensure that the same invariant is not opened twice. In fact,
the mask attached to view shifts in Iris is also just syntactic sugar for
very similar tokens:

|VE1 E2P ≈ InvTokens(E1) −∗ ˙|VInvTokens(E2) ∗ P

In other words, a (potentially mask-changing) fancy update with result P
is something that consumes the right to access all invariants in E1, and
then produces the right to access all invariants in E2.15 That is all that
there is to these mask annotations. With non-atomic invariants, we will
have similar tokens, but we will not have the benefit of syntactic sugar for
managing the tokens—we will pass them around explicitly everywhere,16
which looks as follows:

P ∗ [NaInv : p.E1] ≡−∗E [NaInv : p.E2] ∗Q

Here, [NaInv : p.E] claims ownership of the tokens for all invariants in pool
p that match mask E . Similar to how each thread in a concurrent program
can have its own thread-local memory, non-atomic invariants also come
with support for multiple “pools” that exist independently and whose
masks and namespaces do not interact. The entire proposition above then
describes a view shift which is non-mask-changing with regards to the
“atomic” mask E , but changes the non-atomic mask of pool p from E1
to E2.

14 Cell would be unsound if it
permitted non-atomic mutation of
state that is shared across multiple
threads: there would be data races.

15 Here, ˙|V is the “basic update
modality” of the Iris base logic, and
the definition also omits some other
important aspects of fancy updates.
For all the details, see “Iris from
the ground up: A modular foun-
dation for higher-order concurrent
separation logic” [Jun+18b].

16 We felt that having two masks at
every view shift and Hoare triple
(“normal” invariants and non-atomic
invariants), and four for mask-
changing view shifts, would just
become too confusing.

194

Part II: RustBelt Chapter 12: Semantic type system soundness

LftL-bor-na
&κfull P ≡−∗N &κ/p.Nna P

LftL-na-shorten
κ′ v κ N v N ′

&κ/p.Nna P −∗ &κ
′/p.N ′

na P

LftL-na-persist
persistent(&κ/p.Nna P)

LftL-na-acc
&κ/p.Nna P −∗

(
[κ]q ∗ [NaInv : p.N] ∝Nlft,N .P

)
Figure 12.7: Proof rules for
non-atomic borrows.We show the proof rules for non-atomic invariants in Figure 12.6. The

key proposition is NaInvp.N (P), which states that in namespace N of
pool p, we maintain invariant P . NAInv-new-pool creates a new pool
and returns the token for all invariants in that pool. NAInv-tok-split
establishes that separating conjunction of tokens for the same pool acts
like disjoint union of the token sets. With NAInv-new-inv we can
allocate a new invariant. And finally, the accessor NAInv-acc lets us
open a non-atomic invariant. This accessor is non-mask-changing for the
“atomic” mask, which means the invariant can remain open arbitrarily
long, but it does change the current “non-atomic mask” from E to E \ N
as reflected by the token.

In the Iris technical appendix,17 we explain how non-atomic invariants
can be encoded in Iris in terms of invariants and some ghost state.

Non-atomic borrows. To actually use non-atomic invariants in the sharing
predicate of Cell, we need to integrate them into the lifetime logic. After
all, the sharing predicate describes sharing for a lifetime, so we need to
be able to have non-atomic invariants that only hold while a lifetime is
ongoing—we need non-atomic (“thread-local”) borrows.

These non-atomic borrows are defined in terms of non-atomic invariants
in exactly the same way we defined atomic borrows (§11.4) in terms of
(atomic) invariants (§11.5):18

&κ/p.Nna P := ∃i. &κi P ∗ NaInvp.N ([Bor : i]1) (na-bor)

From this, we can derive the rules shown in Figure 12.7. As usual, non-
atomic borrows can be created from full borrows (LftL-bor-na), can be
shortened (LftL-na-shorten), and are persistent (LftL-na-persist).
The latter rule can also be used to weaken the namespace of a borrow.
And finally, the accessor LftL-na-acc lets us open the borrow given
some fraction of the borrow token. Doing so leaves the atomic mask
unchanged at Nlft,N but removes the borrow’s namespace N from the
non-atomic “mask” by consuming the corresponding token.

12.4 Semantically modeling λRust typing judgments

At last, we have all the ingredients in place to define what the λRust typing
judgments semantically mean, and to verify that the syntactic rules given
in §9.3 are compatible with that meaning. The semantic model of λRust

typing is defined in §12.8 (page 198).19

17 Iris Team, “The Iris 3.2 documen-
tation”, 2019 [Iri19], §10.2.

18 The only difference is that this
time, we do not need to demand N
to be disjoint from Nlft.

19 To streamline the presenta-
tion, we omit the tracking of free
variables in our semantic interpre-
tations. Formally speaking, every
single judgment is indexed by a
context γ which maps free variables
to their interpretation. This context
is carried around everywhere and
extended when descending below a
binder. However, this adds a lot of
clutter, and nothing interesting is
happening there. Correspondingly,
we will also omit the variable-
binding context Γ from the type
system judgments.

195

Part II: RustBelt Chapter 12: Semantic type system soundness

Marker traits. First, we interpret the judgments ` τ copy, ` τ send, and
` τ sync, which correspond to the Rust marker traits Copy, Send, and
Sync, respectively.

Notice how the fact that Rust has two separate traits for thread
safety of owned and shared data (Send and Sync) nicely corresponds to
our semantic types having an ownership and a sharing predicate: Send
corresponds to |= τ send,20 which requires that the ownership predicate
is independent of the thread identifier (and thus easily transferable from
one thread to another); Sync corresponds to |= τ sync, which requires
that the sharing predicate is independent of the thread identifier.

The semantic interpretation of Copy in |= τ copy is a bit more intricate.
First of all we require the ownership predicate to be persistent; that part
is easy. The second part of |= τ copy is needed to justify Tread-bor
for shared references: we need to be able to make a copy of the data the
shared reference points to. This is written as a symmetric accessor. If
we ignore the non-atomic tokens for a moment, the condition looks as
follows:

JτK.shr(κ, t, `) −∗ ([κ]q ∝Nshr,Nlft q′. ∃v. ` q′
7−→ v ∗ . JτK.own(t, v))

In other words, by giving up a fraction of the corresponding lifetime
token we can get temporary, non-atomic read-only access to the memory
behind `, and we know that the data stored there satisfies the ownership
predicate of τ . That ownership predicate is persistent, so we can keep
a copy of it along with the copy of the data, and still close the accessor
again.

However, we would like Cell to be Copy.21 The sharing predicate
of Cell will make use of non-atomic borrows, which means we need
to add non-atomic tokens to the accessors so that those borrows can
be used (LftL-na-acc). Now the easiest solution would be to add
[NaInv : t.Nshr] to the left-hand side of the accessor, letting it open all
non-atomic invariants in Nshr, where Nshr is a namespace that we designate
for the use of sharing predicates. But that would not work: we want
τ1 × τ2 to be Copy if both τ1 and τ2 are Copy. Proving the above accessor
for τ1 × τ2 will boil down to using the accessors for both τ1 and τ2 and
keeping them open at the same time so that we can produce the permission
to read the entire product. If opening the first accessor consumes all our
non-atomic tokens, we cannot use the second accessor and are stuck.

To solve this, we separate the namespace Nshr further into one sub-
namespace Nshr.` per location.22 The starting mask of the shared reference
accessor grants access to the locations in [≥`,<`+ 1 + JτK.size], and the
ending mask requires the last one of them (`+JτK.size) to still be available.
It would be simpler to put [≥`,<`+ JτK.size] on the left-hand side and
leave it at that (having no token on the right-hand side of the symmetric
accessor), but that would mean that types of size 0 would not get access to
any non-atomic invariants at all, which would not work. Thus we provide
the accessor with temporary access to one additional location—temporary
because all borrows/invariants associated with that location must be
closed again before the accessor produces its result. As we will see, this is
sufficient for zero-sized Cell.

20 In this presentation, we restrict
the semantic interpretations of type
system judgments to syntactic types
τ . In the full formalization, the
interpretation can be used on any
semantic type (i.e., any element
of SemType), but here we stick
to syntactic types only to avoid
confusion between the two kinds of
types (and because there is no good
free metavariable left for semantic
types).

21 Cell is currently not Copy in
Rust, but this is due to ergonomic
concerns, not soundness reasons:
accidentally copying a Cell could be
quite confusing. The Rust language
team believes that it would be
sound to make Cell Copy, and
indeed our proof shows that they
are right.

22 Any countable type can be used
to form a namespace in Iris.

196

Part II: RustBelt Chapter 12: Semantic type system soundness

Next, we have to verify that the rules for ` τ copy given in §9.4 hold
for |= τ copy (and similarly for the other two judgments). We do not
show these proofs here, as they are not very interesting.

Typing contexts. We already interpreted the external and local lifetime
contexts in Figure 12.1; here we discuss the two remaining contexts: the
typing context T and the continuation context K. We also have to define
how the paths occurring in typing contexts are to be interpreted.

Note that type and continuation context are interpreted relative to a
thread identifier t, just like types themselves (as we saw in §10). In the
type system proof, we will create one non-atomic “pool” for each thread
of the program and use the pool name p as thread identifier t. All typing
judgments will thread through the tokens for the non-atomic pool of the
current thread.

For the purpose of the type system, a path p denotes some value of
λRust. Note that paths themselves are expressions of λRust, but not values.
These expressions are related to the values they denote by the following
key lemma:

wp-sem-path
wp p {v. v = JpK}

In other words, the value denoted by the path is what the path reduces
to when being evaluated.

The interpretation of a typing context T is a big separating conjunction
of each type assignment in the context. The individual type assign-
ments p C τ are interpreted using JτK.own, the ownership predicate of τ .
A blocked type assignment p C†κ τ corresponds to an inheritance of the
lifetime logic.23

Each element k C cont(L;x.T) of the continuation context K repre-
sents some continuation k that we can call. This is expressed in Iris as a
weakest precondition: under the assumption that the type and lifetime
context given in the type are satisfied, the given code is safe to execute.24
Note that the continuation also has access to [NaInv : t.>], which are all
the non-atomic tokens for the pool of thread t. Remarkably, the continu-
ation context is a big overlapping (“normal”) conjunction of its elements.
This reflects the fact that in F-letcont, both the named continuation F ′

and the body F that will continue execution can make use of the same
continuation context K, implying that all continuations can share their
resources. This sharing does not cause problems because only one of the
continuations can actually be used—when jumping to a continuation, all
the other continuations we locally had available stop mattering.

Subtyping judgments. The last component of the type system that we
have to interpret are the typing judgments themselves, including our
various helper judgments. We begin with our subtyping and coercion
judgments.

For this, we first need to define what “subtyping” means for semantic
types, which is captured by τ1 vty τ2. We follow the usual approach that
for τ1 to be a subtype of τ2, we must have that τ1 is a “subset” of τ2
(if we think of semantic types as sets of values), which translates to our

23 It may be surprising that there is
no . showing up here, like it does
in LftL-borrow. This is because
borrowing always happens at a
pointer type (C-borrow), and
we can use the . that is inherent
in the interpretation of pointer
types: borrowing a proposition that
is already of the shape .P does
not add another . (just as with
invariants).

24 Continuations do not return, so
the postcondition is trivial.

197

Part II: RustBelt Chapter 12: Semantic type system soundness

Semantic model of marker trait judgments.

|= τ send := �∀t1, t2, v. JτK.own(t1, v) −∗ JτK.own(t2, v)
|= τ sync := �∀κ, t1, t2, `. JτK.shr(κ, t1, `) −∗ JτK.shr(κ, t2, `)
|= τ copy := (∀t, v. persistent(JτK.own(t, v))) ∧

�∀κ, t, `, q. JτK.shr(κ, t, `) −∗
(

[NaInv : t.Nshr.[≥`,<`+ JτK.size + 1]] ∗ [κ]q ∝Nshr,Nlft

q′. ∃v. [NaInv : t.Nshr.(`+ JτK.size)] ∗ ` q′
7−→ v ∗ . JτK.own(t, v)

)
Semantic model of paths and typing contexts.

JpK :Val JxK := x Jp.nK := JpK + n

JTK : TId→ iProp
J∅K(t) := True

JT, p C τK(t) := JτK.own(t, [JpK]) ∗ JTK(t)
JT, p C†κ τK(t) :=

(
[†JκK] ≡−∗> JτK.own(t, [JpK])

)
∗ JTK(t)

JKK : TId→ iProp
J∅K(t) := True

JK, k C cont(L;x.T)K(t) :=
(
∀v. [NaInv : t.>] ∗ JLK(1) ∗ JTK(t) −∗ wp JkK(v) {True}

)
∧ JKK(t)

Semantic model of typing judgments.

τ1 vty τ2 := Jτ1K.size = Jτ2K.size ∗
(�∀t, v. Jτ1K.own(t, v) −∗ Jτ2K.own(t, v)) ∗
(�∀κ, t, `. Jτ1K.shr(κ, t, `) −∗ Jτ2K.shr(κ, t, `))

E; L |= τ1 ⇒ τ2 := �∀q. JLK(q) −∗ �(JEK −∗ τ1 vty τ2)
E; L |= T1 ⇒ T2 := �∀t, q. JEK ∗ JLK(q) ∗ JT1K(t) ≡−∗Nlft,Nrust JLK(q) ∗ JT2K(t)
|= T1 ⇒†κ T2 := �∀t. [†κ] ∗ JT1K(t) ≡−∗Nlft,Nrust JT2K(t)

E |= K1 ⇒ K2 := �∀t. JEK ∗ JK1K(t) ≡−∗Nlft,Nrust JK2K(t)

E; L |= τ1 (
τ τ2 := �∀`, t, q. JEK ∗ JLK(q) ∗ Jτ1K.own(t, [v]) ≡−∗Nlft,Nrust

∃`, v. ` = v ∗ |v| = JτK.size ∗ ` 7→ v ∗(
∀v′. ` 7→ v′ ∗ . JτK.own(t, v′) ≡−∗Nlft,Nrust JLK(q) ∗ Jτ2K.own(t, v)

)
E; L |= τ1

(τ τ2 := �∀`, t, q. JEK ∗ JLK(q) ∗ [NaInv : t.>] ∗ Jτ1K.own(t, [v]) ≡−∗Nlft,Nrust

∃`, v, q′. ` = v ∗ ` q′
7−→ v ∗ . JτK.own(t, v) ∗(

`
q′
7−→ v ≡−∗Nlft,Nrust JLK(q) ∗ [NaInv : t.>] ∗ Jτ2K.own(t, v)

)
E; L | T1 |= I |=x.T2 := �∀t. JEK ∗ JLK(1) ∗ JT1K(t) ∗ [NaInv : t.>] −∗

wp I {x. JLK(1) ∗ JT2K(t) ∗ [NaInv : t.>]}
E; L | K; T |= F := �∀t. JEK ∗ JLK(1) ∗ JKK(t) ∗ JTK(t) ∗ [NaInv : t.>] −∗ wp F {True}

Figure 12.8: Semantic mod-
els of typing contexts and
judgments. 198

Part II: RustBelt Chapter 12: Semantic type system soundness

logical approach as the predicate describing τ1 implying the predicate
describing τ2—and in separation logic, the implication turns into a magic
wand. This must be the case for both the ownership and the sharing
predicate (otherwise, we could not verify covariance of shared references
as expressed by T-bor-shr on page 126).

On top of that, we also demand that both types have the same size.
We have to do this to ensure that the product type is covariant (T-prod):
the starting address of the second field depends on the size of the first, and
that address must not change as subtyping is applied. When proving the
inclusion of the sharing predicate of products, we cannot rely on ty-size,
so size equality needs to be explicitly part of the subtyping relation. Most
of the time, this is not actually a restriction: if τ1 is non-empty, then
ty-size implies that if the same list of values v satisfies the ownership
predicates of τ1 and τ2, then the types both have size |v|. However, a
curious consequence of this size constraint is that the empty type is not a
least element of the subtyping relation—in fact, no such element exists
(nor is there a largest element).

Interpreting the subtyping judgment (E; L ` τ1 ⇒ τ2) in terms of
semantic typing then works very similar to how we already interpreted
the judgment for lifetime inclusion.

For type coercion (E; L ` T1 ⇒ T2), the key difference to subtyping
(besides the fact that it acts on entire contexts, not individual types) is that
we use a view shift instead of a magic wand. This is necessary to support
C-share, which relies on ty-share so it needs to be a view shift.25

Type context unblocking (T1 ⇒†κ T2) is very similar to a type coercion,
except that we additionally may assume that lifetime κ is dead.

And finally, continuation coercions (E ` K1 ⇒ K2) work just like type
coercions.

Helper judgments for reads and writes. Next, we consider the two helper
judgments that are used to type reading from and writing to memory.
Both of these are (asymmetric) accessors.

The writing judgment (E; L ` τ1 (τ τ2) says that, given the contexts
E and L as well as ownership of some value v at type τ1, we can learn
that v is actually a location ` and get access to ownership of the memory
pointed to by `, with enough space to put an instance of τ in that place
(|v| = JτK.size). The closing part of the accessor says that once we have
written a valid instance v′ of type τ to `, we can get back the local lifetime
context L as well as ownership of the original value v, now at type τ2.26

The reading judgment (E; L ` τ1

(τ τ2) is similar: given the lifetime
contexts and ownership of some value v at type τ1, we learn that v is
a location ` and get access to fractional ownership of the memory at `
(because fractional ownership is sufficient for reading). We also learn
that the data v at ` has type τ later.27 This update is non-atomic-mask-
changing: the update consumes all the non-atomic tokens of the current
thread t, and only gives them back when the closing part of the accessor
is invoked. To close the accessor again, we need to give back ownership
of the unchanged underlying memory, but we do not need to give back
the ownership predicate of τ—this is crucial for destructive reads that

25 With view shifts, the trick for
keeping assumptions around when
the conclusion is persistent does not
work any more:

P ≡−∗ �Q 0 P ≡−∗ P ∗�Q

For this reason, we have to repeat
JLK(q) on both sides and do not use
the � modality like we did, e.g., for
subtyping.

26 The external lifetime context E is
persistent, so we do not need to get
it back.

27 The reading judgment will be
used when actually reading from
memory, and that read will perform
the physical step necessary to get
rid of the later (wp-step, page 75).

199

Part II: RustBelt Chapter 12: Semantic type system soundness

consume ownership of the data they read from and leave the memory
effectively uninitialized (Tread-own-move). In exchange, we obtain
not only the non-atomic tokens but also the local lifetime context and
ownership of v, now at type τ2.

Typing instructions and function bodies. With all contexts and helper
judgments in place, we can now give meaning to the top-level typing
judgments for individual instructions and entire function bodies (remember
that the latter interpretation is also used to interpret function types in
Figure 12.5).

Both of these judgments use the weakest precondition connective of
Iris, which expresses that a piece of code must be safe to execute under
certain conditions. In fact, we can equivalently write them both as Hoare
triples:

E; L | T1 |= I |=x.T2 ⇐⇒ {JEK ∗ JLK(1) ∗ JT1K(t) ∗ [NaInv : t.>]} I {x. JLK(1) ∗ JT2K(t) ∗ [NaInv : t.>]}
(sem-instr)

E; L | K; T |= F ⇐⇒ {JEK ∗ JLK(1) ∗ JKK(t) ∗ JTK(t) ∗ [NaInv : t.>]} F {True} (sem-fn-body)

The precondition is in each case given by interpreting all the relevant
contexts. Additionally, we may access all the non-atomic borrows of the
current thread t—crucially, this is the same t that is also used to interpret
the type and continuation contexts. The thread identifier is universally
quantified because the verified instruction/function must execute safely
in any thread.

In the postcondition, instructions give back the local lifetime con-
text and the non-atomic tokens, and they provide the changed typing
context T2. For function bodies, the postcondition True is trivial due
to continuation-passing style, which means that function bodies do not
return (they invoke a continuation instead).

These definitions reduce verifying semantic well-typedness of a piece of
code to standard Iris program verification.

12.4.1 Adequacy

Now that we have interpreted all our judgments, we can verify Theorem 5.
So assume some f such that ∅; ∅ | ∅ |= f |=x. x C fn() → Π[]. We have
to show that when we execute f with a no-op continuation, no execution
reaches a stuck state.

By sem-instr and the interpretation of function types in Figure 12.5,
this unfolds to28

∀k, ϝ. ∅; ϝ vl [] | k C cont(ϝ vl [];x. x C own ()); ∅ |= call f() ret k

which in turn by sem-fn-body unfolds to:

∀k, ϝ, t. {Jϝ vl []K(1) ∗ Jk C cont(ϝ vl [];x. x C own ())K(t) ∗ [NaInv : t.>]} F {True}

Following the statement of adequacy, we pick k := (rec k(x) := h). Using
NAInv-new-pool, we can create some fresh thread identifier t and own
all the non-atomic tokens for it, and with LftL-begin we can create the

28 For demonstration purposes, we
are glossing over some details here,
such as wp v {Q} not actually being
equivalent to Q(v) (but rather to
|VQ(v)), and we should substitute k
into the body of f instead of using
function application.

200

Part II: RustBelt Chapter 12: Semantic type system soundness

{(
(1) �∀q. JEK −∗

(
JLK(q) ∝Nlft,Nrust q′. [JκK]q′

))}
Goal: �∀t, q. JEK ∗ JLK(q) ∗ Jp C &κmut τK(t) ≡−∗Nlft,Nrust JLK(q) ∗ Jp C &κshr τK(t)
Introduce persistence modality (�-intro on page 69) and assumptions of view shift.
Instantiate (1) with q and JEK.{(
JLK(q) ∝Nlft,Nrust q′. [JκK]q′

)
∗ JLK(q) ∗ Jp C &κmut τK(t)

}
Nlft,Nrust

Open accessor (using up JLK(q)), get closing view shift (2) [JκK]q′ ≡−∗Nlft,Nrust JLK(q).{
[JκK]q′ ∗ Jp C &κmut τK(t) ∗ (2)

}
Nlft,Nrust

Unfold J&αmut _K.own (mut-ref-own).{
[JκK]q′ ∗&JκK

full
(
∃w. JpK 7→ w ∗ JτK.own(t, w)

)
∗ (2)

}
Nlft,Nrust

Apply ty-share.{
[JκK]q′ ∗ JτK.shr(JκK, t, JpK) ∗ (2)

}
Nlft,Nrust

Apply (2).
{JLK(q) ∗ JτK.shr(JκK, t, JpK)}Nlft,Nrust

Fold J&αshr _K.own (shr-ref-own).
Goal: JLK(q) ∗ Jp C &κshr τK(t) Figure 12.9: Proof outline for

C-share-sem.
lifetime ϝ and own its token (which implies Jϝ vl []K(1)). Verifying that k
has type cont(ϝ vl [];x. x C own ()) is not very hard.

Now adequacy of the λRust type system is a consequence of adequacy
of the Iris program logic, which says that a verified program whose pre-
condition is satisfied cannot get stuck and actually exhibits the behavior
described by the specification.29 All the hard work of relating our inter-
pretation of function bodies to actual program executions was already
done when we instantiated the Iris program logic for the λRust language!

12.5 The fundamental theorem of λRust

We have now completed the semantic interpretation of the λRust type
system. This means we are finally ready to verify Theorem 4: for any
inference rule of the type system given in §9, when we replace all ` by
|= (replacing syntactic judgments by their semantic interpretation), we
have to prove the resulting Iris theorem. We will of course not do this for
every single typing rule, but pick a few interesting ones.

Semantic correctness of C-share. This rule is responsible for turning a
mutable reference into a shared reference. It has been mentioned several
times as the motivation for ty-share, so it will not be surprising that
the proof of C-share is mostly an exercise in rearranging things until we
can apply ty-share. Concretely, we have to show:

C-share-sem
E; L |= κ alive

E; L |= p C &κmut τ ⇒ p C &κshr τ

The proof outline is given in Figure 12.9. We basically just unfold
everything, apply the liveness judgment to get a fraction of the lifetime
token for κ, use that to apply ty-share, and fold everything back again.

29 Jung et al., “Iris from the ground
up: A modular foundation for
higher-order concurrent separation
logic”, 2018 [Jun+18b], §6.4; Iris
Team, “The Iris 3.2 documentation”,
2019 [Iri19], §9.2.

201

Part II: RustBelt Chapter 12: Semantic type system soundness

{(
(1) n = size(τ)

)
∗ JEK ∗ JLK(q) ∗ [NaInv : t.>] ∗ Jownm τK.own(t, [v])

}
Nlft,Nrust

Unfold Jown _K.own (own-ptr-own), use |V-timeless to remove some ..
{JLK(q) ∗ [NaInv : t.>] ∗ v = ` ∗ ` 7→ w ∗ . JτK.own(t, w) ∗ Dealloc(`, JτK.size, n)}Nlft,Nrust

By ty-size, we get (2) |w| = size(τ) (also using |V-timeless).
Goal: |VNlft,Nrust

∃`, v, q′. ` = v ∗ ` q′
7−→ v ∗ . JτK.own(t, v) ∗(

`
q′
7−→ v ≡−∗Nlft,Nrust JLK(q) ∗ [NaInv : t.>] ∗ Jownm nK.own(t, v)

)
Introduce update modality. Instantiate ` := `, v := w, q′ := 1.
Discharge all separating conjuncts except the last.
{JLK(q) ∗ [NaInv : t.>] ∗ Dealloc(`, JτK.size, n)}
Goal: ` 7→ w ≡−∗Nlft,Nrust JLK(q) ∗ [NaInv : t.>] ∗ Jownm nK.own(t, v)
Introduce assumption of magic wand.
{JLK(q) ∗ [NaInv : t.>] ∗ Dealloc(`, JτK.size, n) ∗ ` 7→ w}Nlft,Nrust

By (1) and (2), |w| = n. Use uninit-own.
{JLK(q) ∗ [NaInv : t.>] ∗ Dealloc(`, JτK.size, n) ∗ ` 7→ w ∗ J nK.own(t, w)}Nlft,Nrust

Fold Jown _K.own.
Goal: |VNlft,Nrust

JLK(q) ∗ [NaInv : t.>] ∗ Jownm nK.own(t, v)
Figure 12.10: Proof outline for
Tread-own-move-sem.

Semantic correctness of Tread-own-move. Next, we consider the rule
that lets us move the τ out of an own τ , leaving behind an own n:

Tread-own-move-sem
n = size(τ)

Γ | E; L |= ownm τ

(τ ownm n

The proof outline for this rule is shown in Figure 12.10.30 After unfolding
our assumptions, we basically already have what we need to complete the
first part of the accessor. We just have to use ty-size to remember for
later that w, the list of values the owned pointer points to, has length
size(τ). Then we go on with the accessor, and in the end we need to show
that the owned pointer now points to n. Here we use uninit-own which
says that we only need to prove that w has the right length.31

Semantic correctness of S-deref-bor-mut for shared references. To
demonstrate working with the “delayed sharing” of mutable references,
we show how to verify the following rule:

S-deref-shr-mut-sem
E; L |= κ alive E; L |= κ v κ′

E; L | p C &κshr &κ
′

mut τ |= ∗p |=x. x C &κshr τ

The proof outline is given in Figure 12.11. Note that we are verifying a
Hoare triple here, and the code we are verifying is ∗p.32

After unfolding everything, we use the fact that κ is alive (the first
premise) to obtain some fraction of the token for κ. We actually need
two tokens for this lifetime, so we split the token, halving the fraction
(LftL-tok-fract). One token is used to get access to JpK q7−→ _ via LftL-
fract-acc, of which we obtained a fractured borrow from unfolding the
shared and mutable references.

The other token is converted into a token for κ u κ′, which (by LftL-
incl-glb and with our second assumption κ v κ′) is the same lifetime

30 This time, we immediately
introduce all the assumptions of the
goal into the first statement of our
available resources (so we basically
skip the first step of the previous
proof outline).

31 As one would expect, for uninitial-
ized memory the actual data in the
list does not matter.

32 We use the same colors as before
for resources in general and persis-
tent resources specifically, and also
use blue to indicate the code that is
being verified.

202

Part II: RustBelt Chapter 12: Semantic type system soundness

{(
(1) �∀q. JEK −∗

(
JLK(q) ∝Nlft,Nrust q′. [JκK]q′

))
∗
(

(2) �∀q. JLK(q) −∗ �(JEK −∗ JκK v Jκ′K)
)
∗

JEK ∗ JLK(1) ∗ Jp C &κshr &κ
′

mut τK(t) ∗ [NaInv : t.>]

}
>

Instantiate (2) with q := 1 and JLK(1) (which we keep by �-wand-keep), and then with JEK.
Unfold J&κshr _K.own (shr-ref-own).{(

(3) JκK v Jκ′K
)
∗ JLK(1) ∗ J&κ

′

mut τK.shr(JκK, t, JpK) ∗ [NaInv : t.>]
}
>

Unfold J&κmut _K.shr (Figure 12.5).{
JLK(1) ∗&JκK

frac(λq. JpK
q7−→ `′) ∗ [NaInv : t.>] ∗

(4) �
(
∀q. [Jκ′K u JκK]q −∗ |VNshr∪Nlft Nlft . |VNlft Nshr∪Nlft

(
JτK.shr(Jκ′K u JκK, t, `′) ∗ [Jκ′K u JκK]q

))}
>

Use (1) with q := 1, split resulting token [JκK]qκ into two (LftL-tok-fract on page 142),
get closing view shift: (5) [JκK]qκ ≡−∗Nlft,Nrust JLK(1).{
&JκK

frac(λq. JpK
q7−→ `′) ∗ [JκK]qκ/2 ∗ [JκK]qκ/2 ∗ [NaInv : t.>] ∗ (5)

}
>

Open fractured borrow (LftL-fract-acc, page 146), get closing view shift: (6) JpK qp7−→ `′ ≡−∗Nlft [JκK]qκ/2.{
JpK qp7−→ `′ ∗ [JκK]qκ/2 ∗ [NaInv : t.>] ∗ (5) ∗ (6)

}
>

By LftL-incl-glb and (3), we have (7) JκK v Jκ′K u JκK. Thus by LftL-incl we can exchange [JκK]qκ/2
for [Jκ′K u JκK]qκ′ , getting closing view shift: (8) [Jκ′K u JκK]qκ′ ≡−∗Nlft [JκK]qκ/2.{
JpK qp7−→ `′ ∗ [Jκ′K u JκK]qκ′ ∗ [NaInv : t.>] ∗ (5) ∗ (6) ∗ (8)

}
>

Instantiate (4) with q := qκ′ and the token we just got.{
JpK qp7−→ `′ ∗ [NaInv : t.>] ∗ (5) ∗ (6) ∗ (8) ∗

|VNshr∪Nlft Nlft . |VNlft Nshr∪Nlft
(
JτK.shr(Jκ′K u JκK, t, `′) ∗ [Jκ′K u JκK]qκ′

)}
>

∗p (wp-sem-path and then lrust-deref-na, plus wp-step to strip away the |V . |V){
JpK qp7−→ `′ ∗ [NaInv : t.>] ∗ (5) ∗ (6) ∗ (8) ∗ JτK.shr(Jκ′K u JκK, t, `′) ∗ [Jκ′K u JκK]qκ′

}
>

Use all the closing view shifts: (8), (6), (5).
{JLK(1) ∗ [NaInv : t.>] ∗ JτK.shr(Jκ′K u JκK, t, `′)}>
Apply ty-shr-mono with (7). Fold J&κshr _K.own (shr-ref-own).
{JLK(1) ∗ [NaInv : t.>] ∗ J&κshr τK.own(t, `′)}>
Goal: |V> (JLK(1) ∗ J`′ C &κshr τK(t) ∗ [NaInv : t.>])

Figure 12.11: Proof outline for
S-deref-shr-mut-sem.as κ. This token for κ u κ′ is what we need to make use of the “delayed

sharing” assertion that we obtained when unfolding the mutable reference:

�
(
∀q. [Jκ′K u JκK]q −∗ |VNshr∪Nlft Nlft . |VNlft Nshr∪Nlft(

JτK.shr(Jκ′K u JκK, t, `′) ∗ [Jκ′K u JκK]q
))

To eliminate the three modalities that make up this “view shift that takes
a step” (|VNshr∪Nlft Nlft . |VNlft Nshr∪Nlft), we use wp-step (page 75). This
means that after executing ∗p, we obtain the sharing predicate for τ ,
and we get back the lifetime token that we invested earlier. We can now
close everything up again, and the postcondition is just one application
of ty-shr-mono away.

Semantic correctness of F-newlft. The final proof rule we will look at
is the one to start a new lifetime:

F-newlft-sem
∀α.E; L, α vl κ | K; T |= F

E; L | K; T |= newlft;F

The proof outline is shown in Figure 12.12.

203

Part II: RustBelt Chapter 12: Semantic type system soundness

{(
(1) ∀α. �∀t. JEK ∗ JL, α vl κK(1) ∗ JKK(t) ∗ JTK(t) ∗ [NaInv : t.>] −∗ wp F {True}

)}
Goal: �∀t. JEK ∗ JLK(1) ∗ JKK(t) ∗ JTK(t) ∗ [NaInv : t.>] −∗ wp newlft;F {True}
Introduce persistence modality (�-intro) and assumptions of magic wand.
{JEK ∗ JLK(1) ∗ JKK(t) ∗ JTK(t) ∗ [NaInv : t.>]}>
newlft;
Make use of LftL-begin.{

[κ]1 ∗�
(
[κ]1 .≡−∗Nlft [†κ]

)
∗ JEK ∗ JLK(1) ∗ JKK(t) ∗ JTK(t) ∗ [NaInv : t.>]

}
>

Define α := κ u (uκ′′∈JκKκ
′′). Fold Jα vl κK (Figure 12.1).

{Jα vl κK(1) ∗ JEK ∗ JLK(1) ∗ JKK(t) ∗ JTK(t) ∗ [NaInv : t.>]}>
F (by (1), using all our resources)

Figure 12.12: Proof outline for
F-newlft-sem.

There is actually not much happening here, we apply LftL-begin and
let the lifetime logic do the heavy lifting. It is worth pointing out that
the new lifetime α is not equal to the lifetime κ that is generated by the
lifetime logic; instead, we pick α := κ u κ, matching how we set up the
interpretation of external lifetime contexts in §12.1. This corresponds
to the type system rule Lalive-local (page 115), which says when a
local lifetime is alive: one might expect that local lifetimes are always
alive, but they can be dead when one of their superlifetimes in κ has been
ended. This can happen because the local lifetime context only owns the
token for the extra lifetime κ that is intersected with all the others in κ
to obtain α. Consequently, Lalive-local says that we need to prove
that all the lifetimes in κ are still alive.

This concludes our tour through the semantic model of λRust. To obtain
Theorem 4, the fundamental theorem of logical relations, we have to
complete proofs like the above for every single typing rule. Verifying all
the typing rules by hand would be rather tedious and very error-prone,
which is why we carried out this verification in Coq. Most of these proofs
are easy; S-deref-shr-mut-sem is one of the few examples of typing rules
where something interesting is happening. The key challenge in building
a semantic model of λRust was to come up with the right definitions so
that everything actually fits together—almost everything complicated is
already handled by the lifetime logic.

204

Chapter 13

Modeling types with interior mutability

As we have discussed in §8.6, the standard library of Rust provides types
with interior mutability. These types, written in Rust using unsafe
features, can nonetheless be used safely because the interface they provide
to client code encapsulates these unsafeties behind well-typed abstractions.
We have proven the safety of several such libraries, namely: Cell, RefCell,
Mutex, RwLock, Rc, and Arc.1 To fulfill this goal, we first had to pick
semantic interpretations (in the sense of §10) for the abstract types
exported by these libraries (e.g., Cell<T>). We then proved that each
publicly exported function from these libraries satisfies the semantic
interpretation of its type.

When modeling types with interior mutability, the most difficult def-
inition is usually that of the sharing predicate JτK.shr. The sharing
predicate used by these types is different from the default read-only pred-
icate for “simple types” that we described in §10.4, and it varies greatly
depending on which operations are allowed by the type in question. This
variety reflects the range of mechanisms that can be used to ensure safe
encapsulation of shared mutable state.

We focus our explanations on two representative forms of interior
mutability that we have already presented in §8.6: Cell (§13.1) and
Mutex (§13.2). Cell is a zero-overhead variant of interior mutability
that is safe because it confines sharing to a single thread, and because it
does not permit interior pointers that could be invalidated by mutation.
Mutex permits safe mutable sharing across thread boundaries via mutual
exclusion.

13.1 Cell

In §8.6, we have seen that Cell<T> stores values of type T and provides
two core functions: Cell::get and Cell::replace, which can be used for
reading from and writing to the cell (replace returns the old, previously
stored value).2 These are their types:

Cell::get : fn(&Cell<T>) -> T where T: Copy

Cell::replace : fn(&Cell<T>, T) -> T

The goal in this section is to define the semantic interpretation Jcell(τ)K
as the equivalent of Cell<T> in RustBelt such that these operations are
semantically well-typed.3

1 Note that some simplifications
of our setup make the proof of a
few of these libraries simpler: we
are not handling unwinding after
panics, and we assume all atomic
memory operations are sequentially
consistent, while Rust’s standard
library uses weaker atomic accesses.
Beyond the libraries listed here,

we have also verified some unsafe
code that does not involve any
interior mutability: take_mut,
mem::swap, thread::spawn and
rayon::join. The last two are
particularly important as they give
safe code access to concurrency.

2 Cell::set is safely implemented in
terms of Cell::replace, so it does
not have to be verified.

3 Here we pretend that cell is a
syntactic type. In our actual proof
in Coq, we have defined a semantic
type constructor cell(_) that can
be applied to any semantic type
in SemType (as mentioned before,
all semantic interpretations also
work for any semantic type, not
just syntactic types). Thus, we do
not actually have to extend the
grammar of types to account for
Cell.

205

Part II: RustBelt Chapter 13: Modeling types with interior mutability

13.1.1 Semantic interpretation of Cell

It turns out that ownership of cell(τ) is the same as τ :

Jcell(τ)K.size := JτK.size
Jcell(τ)K.own(t, v) := JτK.own(t, v) (cell-own)

This is even observable in the Rust standard library, which provides
two functions for converting between T and Cell<T>: Cell::new and
Cell::into_inner. Both of these are effectively the identity function.
In other words, every owned τ is also an owned cell(τ), and vice versa.4

The sharing predicate is where things become interesting. Remember
that replace can be called even if you only have a shared reference to a
Cell<T>. Translated to λRust, their types are as follows:

get : τ copy⇒ ∀α. fn(ϝ : ϝ ve α;&αshr cell(τ))→ τ

replace : ∀α. fn(ϝ : ϝ ve α;&αshr cell(τ), τ)→ τ

This means that Cell<i32> must use a very different sharing predicate
than i32, which merely provides read-only access. In contrast, to verify
replace, we need full (read/write) access for the duration of the function
call. However, it is also important that all shared references to a Cell
are confined to a single thread, since the get and replace operations are
not thread safe. Recall that Rust enforces this by declaring that Cell is
not Sync, which is equivalent to saying that &Cell is not Send, so that
shared references to it cannot be sent to another thread—they must stay
in the thread they have initially been created in.

In order to encode this idea, we use non-atomic borrows as discussed
in §12.3:5

Jcell(τ)K.shr(κ, t, `) := &κ/t.Nshr.`
na

(
∃v. ` 7→ v ∗ JτK.own(t, v)

)
(cell-shr)

The namespace for the non-atomic invariant is Nshr.` in pool t; we have
already seen this use of locations in namespaces when defining |= τ copy,
and indeed that definition was carefully chosen to permit cell(τ) to be
Copy.

Well-formedness. To make sure Jcell(τ)K is a well-formed semantic type,
we have to show the conditions laid down in Figure 12.4. ty-size is easy
(it follows from JτK satisfying it). ty-shr-persist and ty-shr-mono
follow from LftL-na-persist and LftL-na-shorten, respectively. The
most interesting property is usually ty-share, but in our case that just
yields the following goal:6

&κfull
(
∃w. ` 7→ w ∗ JτK.own(t, w)

)
∗ [κ]q ≡−∗Nlft

&κ/t.Nshr.`
na

(
∃v. ` 7→ v ∗ JτK.own(t, v)

)
∗ [κ]q

This follows directly via LftL-bor-na; we do not even need the lifetime
token.

Marker traits. We also have to show that whenever the Rust type
Cell<T> is Copy/Send/Sync, then we can prove the corresponding se-
mantic properties for our cell(τ).

4 This also explains Cell::get_mut,
which can turn a &mut Cell<T>
into &mut T: mutable references are
defined in terms of full ownership,
so if an owned τ1 and τ2 are equiva-
lent, then so are owned &κmut τ1 and
&κmut τ2.

5 With respect to the handling of
recursive types that we mentioned
at the end of §10.4, it is important
to notice that the sharing predicate
of Jcell(τ)K only makes guarded
use of the ownership predicate of
τ (i.e., the use is inside a borrow,
which is almost the same as it being
below a .). This is crucial for the
soundness of recursive types that
have their recursive occurrence
inside a cell. It makes sure that
even if the pointer type that guards
the recursive type occurrence is a
shared reference (where the sharing
predicate of &κshr τ makes unguarded
use of the ownership predicate of τ),
the underlying semantic type still
appropriately guards all recursive
occurrences on the Iris level.

6 A note on parsing: &κfull P ∗ Q
parses as (&κfull P) ∗Q, i.e., borrows
bind weaker than separating con-
junctions. This means they bind
like modalities, e.g., � and ..

206

Part II: RustBelt Chapter 13: Modeling types with interior mutability

For Copy, we prove that |= τ copy implies |= cell(τ) copy. The proof
outline is shown in Figure 13.1. As already mentioned, Cell<T> is never
actually Copy in Rust, but that is to avoid potential pitfalls, not due to
soundness concerns.

First we treat JτK.size = 0 as a special case. Intuitively, zero-sized
Copy types are special because everything about them is persistent: there
is not even some memory that needs to be owned to access them. Hence
we can prove:

Jcell(τ)K.shr(κ, t, `) −∗(
[NaInv : t.Nshr.`] ∗ [κ]q ∝Nshr,Nlft [NaInv : t.Nshr.`] ∗ . JτK.own(t, ε)

)
This holds because we can use LftL-na-acc to open the non-atomic
borrow, then use |= τ copy to deduce that JτK.own(t, v) is persistent (so
we can duplicate it) and close the non-atomic borrow again. By ty-size,
v = ε, which completes this accessor. Overall, this accessor is non-mask-
changing for the non-atomic “mask”. From this, |= cell(τ) copy easily
follows because ` 7→ ε is trivial (lrust-heap-nil, page 133).

In the general case of the size not being zero, we prove:

Jcell(τ)K.shr(κ, t, `) −∗(
[NaInv : t.Nshr.`] ∗ [κ]q ∝Nshr,Nlft q′. ∃v. ` q′

7−→ v ∗ . JτK.own(t, ε)
)

To show this, we use LftL-na-acc to open the non-atomic borrow. Our
accessor does change the non-atomic “mask” (Nshr.` is opened and thus
removed from the mask). But that is permitted by |= cell(τ) copy because
the only part of the mask we have to keep is Nshr.(`+ JτK.size), which is
disjoint from the part we removed since JτK.size 6= 0.

As for Send, since we defined Jcell(τ)K.own via JτK.own, we can easily
show that |= τ send implies |= cell(τ) send.

Finally, |= cell(τ) sync does not hold: the thread identifier t is crucial
in the definition of our sharing predicate. This reflects the fact that
Cell<T> is never Sync.

13.1.2 Soundness of the public operations

With the type interpretation in place and its basic properties verified,7
the next step is to go over each operation that is defined on that type, and
use sem-fn-body to prove that running this operation respects semantic
typing. We will focus on get and replace.

Verifying get. The λRust source code of get looks as follows:

funrec getn(c) ret ret :=
let c’ = ∗c in
let r = new(n) in
r :=n

∗c’;
delete(1, c);
jump ret(r)

And this is its type:

getsize(τ) : τ copy⇒ ∀α. fn(ϝ : ϝ ve α;&αshr cell(τ))→ τ

7 We are skipping variance in this
discussion. Cell<T> is invariant, but
we still have to prove that the type
can be substituted by an equivalent
type. We will not go into details of
variance in this dissertation as there
is nothing interesting happening
there; suffice to say that the key
proof rule used in proving variance
lemmas of borrows is LftL-idx-iff
(page 150).

207

Part II: RustBelt Chapter 13: Modeling types with interior mutability

Case JτK.size = 0.{(
(1) &κ/t.Nshr.`

na
(
∃v. ` 7→ v ∗ JτK.own(t, v)

))
∗ [NaInv : t.Nshr.[≥`,<`+ 0 + 1]] ∗ [κ]q

}
Nshr,Nlft

Observe that [≥`,<`+ 0 + 1] = {`}, so the token we own is [NaInv : t.Nshr.`].
Open non-atomic borrow (1) with LftL-na-acc,
get closing view shift:(2) .

(
∃v. ` 7→ v ∗ JτK.own(t, v)

)
≡−∗Nshr,Nlft [NaInv : t.Nshr.`] ∗ [κ]q.

{` 7→ v ∗ . JτK.own(t, v) ∗ (2)}Nshr,Nlft

(. JτK.own(t, v) is persistent by |= τ copy.)
By ty-size, we have |v| = 0 and thus v = ε.
Use lrust-heap-nil to get a second ` 7→ ε. Use (2) with v := ε.{
` 7→ ε ∗ [NaInv : t.Nshr.`] ∗ [κ]q

}
Nshr,Nlft

Goal: |VNshr,Nlft
(∃q′. (∃v′. [NaInv : t.Nshr.(`+ 0)] ∗ ` q′

7−→ v′ ∗ . JτK.own(t, v′)) ∗ . . .)
Introduce update modality, pick q′ := 1 and v′ := ε, and discharge first separating conjunct.{

[κ]q
}

Goal: (∃v′. [NaInv : t.Nshr.`] ∗ ` 7→ v′ ∗ . JτK.own(t, v′)) ≡−∗Nshr,Nlft [NaInv : t.Nshr.`] ∗ [κ]q
Introduce assumption of magic wand.{

[κ]q ∗ [NaInv : t.Nshr.`] ∗ ` 7→ v′ ∗ . JτK.own(t, v′)
}
Nshr,Nlft

Goal: |VNshr,Nlft

(
[NaInv : t.Nshr.`] ∗ [κ]q

)
Case JτK.size 6= 0.{(

(1) &κ/t.Nshr.`
na

(
∃v. ` 7→ v ∗ JτK.own(t, v)

))
∗ [NaInv : t.Nshr.[≥`,<`+ 1 + JτK.size]] ∗ [κ]q

}
Nshr,Nlft

Split off non-atomic token for Nshr.` (NAInv-tok-split), needs ` ∈ [≥`,<`+ JτK.size + 1].
Then open borrow (1) with LftL-na-acc,
get closing view shift: (2) .

(
∃v. ` 7→ v ∗ JτK.own(t, v)

)
≡−∗Nshr,Nlft [NaInv : t.Nshr.`] ∗ [κ]q.

{[NaInv : t.Nshr.[≥`+ 1, <`+ JτK.size + 1]] ∗ ` 7→ v ∗ . JτK.own(t, v) ∗ (2)}Nshr,Nlft

Split off non-atomic token for Nshr.(`+ JτK.size), needs (`+ JτK.size) ∈ [≥`+ 1, <`+ JτK.size + 1].
Goal: |VNshr,Nlft

(∃q′. (∃v′. [NaInv : t.Nshr.(`+ JτK.size)] ∗ ` q′
7−→ v′ ∗ . JτK.own(t, v′)) ∗ . . .)

Introduce update modality, pick q′ := 1 and v′ := v, and discharge first separating conjunct.
{[NaInv : t.Nshr.[≥`+ 1, <`+ JτK.size]] ∗ (2)}
Goal: (∃v′′. [NaInv : t.Nshr.`] ∗ ` 7→ v′′ ∗ . JτK.own(t, v′′)) ≡−∗Nshr,Nlft

[NaInv : t.Nshr.[≥`,<`+ 1 + JτK.size]] ∗ [κ]q
Introduce assumption of magic wand.
Merge the non-atomic tokens again (NAInv-tok-split).
{[NaInv : t.Nshr.[≥`+ 1, <`+ JτK.size + 1]] ∗ (2) ∗ ` 7→ v′′ ∗ . JτK.own(t, v′′)}Nshr,Nlft

Use (2), with v := v′′.{
[NaInv : t.Nshr.[≥`+ 1, <`+ JτK.size + 1]] ∗ [NaInv : t.Nshr.`] ∗ [κ]q

}
Nshr,Nlft

Goal: |VNshr,Nlft

(
[NaInv : t.Nshr.[≥`,<`+ 1 + JτK.size]] ∗ [κ]q

)
Figure 13.1: Outline of Copy
proof for Cell<T>.

208

Part II: RustBelt Chapter 13: Modeling types with interior mutability

Note that the code is parameterized by n, the size of the type τ . This is
relevant to be able to copy the right amount of data.

This corresponds to the Rust source code of Cell::get after inlining a
few extra layers of abstraction. We also account for the extra indirection of
arguments and return values in λRust: c is a pointer to a shared reference
to a Cell, and we return a copy of the data contained in that Cell.

Our goal is to prove that get is semantically well-typed. Following
S-fn, a function is well-typed if its body is well-typed. According to
sem-fn-body, we can show that the body is well-typed by verifying the
following Iris Hoare triple:8{

Jϝ ve αK ∗ Jϝ vl []K(q) ∗ Jret C cont(ϝ vl []; r. r C own τ)K(t) ∗
Jc C own &αshr cell(τ)K(t) ∗ [NaInv : t.>]

}
call getJτK.size(c) ret ret

{True}
(cell-get)

The proof outline for this is shown in Figure 13.2.
As we can see, we end up having to prove a Hoare triple, so we

are performing essentially standard Iris program verification. The first
operation we have to justify is let c’ = ∗c. Justifying such a load requires
ownership of (a fraction of) c 7→ v,9 which we can obtain by unfolding
the interpretation of our typing context: as defined in own-ptr-own
(page 135), c C own &αshr cell(τ) means that c is a pointer that we can
load from, and the value c’ it points to satisfies J&αshr cell(τ)K.own(t, [c’]).
By further unfolding ownership of a shared reference (shr-ref-own on
page 137) we obtain Jcell(τ)K.shr(α, t, c’).

In the next step, the function allocates JτK.size memory locations
(let r = new(JτK.size)). We make use of lrust-new (page 133) and ac-
quire ownership of r 7→ vr for some list of values vr of length JτK.size, and
we also acquire Dealloc(r, JτK.size, JτK.size), representing the permission
to deallocate this block again.

Now we come to the key operation: r :=JτK.size
∗c’ creates a copy of

the data c’ points to (i.e., the data in the Cell) and puts that copy into
r. The interesting part here is obtaining the permission to read from c’.
To do this, we have to unfold our Jcell(τ)K.shr(α, t, c’); by our choice
for the sharing predicate (cell-shr on page 206), we get a non-atomic
borrow at lifetime α of ∃v. c’ 7→ v ∗ JτK.own(t, v). To access that borrow,
we need the lifetime token for α. We use the following lemma to argue
that since α is syntactically alive, it is also semantically alive:10

Lalive-sem
E; L ` κ alive

∀q. JEK −∗
(
JLK(q) ∝Nlft,Nrust q′. [JκK]q′

)
The borrow also requires some non-atomic invariant tokens, which is
where we make use of [NaInv : t.>].11 Thus we have both c’ 7→ vc′ and
r 7→ vr.12 We can also show that both of these lists of values have length
JτK.size (by ty-size, JτK.own(t, vc′) implies that vc′ matches the size
of τ).13 Now we can apply lrust-memcpy (from page 133) to prove that

8 We are slightly cheating here and
abbreviate the body of get with a
call—basically an η-expansion of the
goal we would actually get.

9 At this point we are conflating
program-level variables c and logic-
level variables such as `′ in the
proof outline, as explained in §7.3.

10 This lemma easily follows via the
fundamental theorem (Theorem 4).

11 The normal invariant mask
remains unchanged, which means
the non-atomic borrow can be kept
open for the entire duration of the
memcpy.

12 We first obtain the borrowed
proposition under a . modality.
However, we can commute that
around the existential quantification
over v as lists are inhabited (see
Figure 5.1 on page 64), and then we
can remove the . from . c’ 7→ vc′

(|V-timeless).

13 Again ty-size first gives us
.(|vc′ | = JτK.size), but equality of
integers is timeless.

209

Part II: RustBelt Chapter 13: Modeling types with interior mutability

Proof outline for cell-get.{
Jϝ ve αK ∗ Jϝ vl []K(q) ∗

(
(1) Jret C cont(ϝ vl []; r. r C own τ)K(t)

)
∗

Jc C own &αshr cell(τ)K(t) ∗ [NaInv : t.>]

}
>

Unfold Jown _K.own (own-ptr-own, page 135).
{Jϝ vl []K(q) ∗ (1) ∗ (∃vc. c 7→ vc ∗ .J&αshr cell(τ)K.own(t, vc) ∗ Dealloc(c, 1, 1)) ∗ [NaInv : t.>]}>
Unfold J&αshr _K.own (shr-ref-own) and Jcell(τ)K.shr (cell-shr).{
Jϝ vl []K(q) ∗ (1) ∗

(
∃`′. c 7→ `′ ∗ .&α/t.Nshr.`

′

na
(
∃v. `′ 7→ v ∗ JτK.own(t, v)

))
∗ Dealloc(c, 1, 1) ∗ [NaInv : t.>]

}
>

let c’ = ∗c in (lrust-deref-na, `′ becomes c’){
Jϝ vl []K(q) ∗ (1) ∗

(
(2) c 7→ c’ ∗ Dealloc(c, 1, 1)

)
∗(

(3) &α/t.Nshr.c’
na

(
∃v. c’ 7→ v ∗ JτK.own(t, v)

))
∗ [NaInv : t.>]

}
>

let r = new(JτK.size) in (lrust-new){
Jϝ vl []K(q) ∗ (1) ∗ (2) ∗ r 7→ vr ∗ |vr| = JτK.size ∗

(
(4) Dealloc(r, JτK.size, JτK.size)

)
∗ [NaInv : t.>]

}
>

Use Jϝ vl []K(q) and ϝ ve α; ϝ vl [] ` α alive to get [α]q′ (Lalive-sem),
closing view shift: (5) [α]q′ ≡−∗Nlft Jϝ vl []K(q).{

(1) ∗ (2) ∗ [α]q′ ∗ r 7→ vr ∗ (4) ∗ (5) ∗ [NaInv : t.>]
}
>

With that new token, open borrow (3) via LftL-na-acc,
get closing view shift: (6) .

(
∃v. c’ 7→ v ∗ JτK.own(t, v)

)
≡−∗Nshr,Nlft [NaInv : t.Nshr.c’] ∗ [α]q′ .

{(1) ∗ (2) ∗ c’ 7→ vc′ ∗ . JτK.own(t, vc′) ∗ r 7→ vr ∗ (4) ∗ (5) ∗ (6) ∗ [NaInv : t.> \ Nshr.c’]}>
r :=JτK.size

∗c’; (lrust-memcpy with |vr| = JτK.size, and |vc′ | = JτK.size by ty-size)
{(1) ∗ (2) ∗ c’ 7→ vc′ ∗ JτK.own(t, vc′) ∗ r 7→ vc′ ∗ (4) ∗ (5) ∗ (6) ∗ [NaInv : t.> \ Nshr.c’]}>
JτK.own is persistent by |= τ copy. Close borrow (6) with v := vc′ , and then lifetime context (5).
{Jϝ vl []K(q) ∗ (1) ∗ (2) ∗ r 7→ vc′ ∗ (4) ∗ [NaInv : t.>]}>
delete(1, c); (lrust-delete, consumes (2))
{Jϝ vl []K(q) ∗ (1) ∗ r 7→ vc′ ∗ (4) ∗ [NaInv : t.>]}>
Fold r 7→ vc′ ∗ JτK.own(t, vc′) ∗ (4) into Jr C own τK(t) (own-ptr-own).
{Jϝ vl []K(q) ∗ (1) ∗ Jr C own τK(t) ∗ [NaInv : t.>]}>
jump ret(r) (by (1), using up all the other resources)

Figure 13.2: Proof outline for
Cell::get.the memcpy is safe. Afterwards, we close the non-atomic borrow again,

and we un-do the Lalive-sem accessor to get back our lifetime contexts.
Then the program deallocates c by running delete(1, c).14 By lrust-

delete and own-ptr-own, the deallocation permission Dealloc(c, 1, 1)
we need for this is contained in the interpretation of the owned pointer c
that we started with.

Finally, jump ret(r) calls the continuation ret with the pointer r,
where we put the copy of the Cell content. This exactly uses up all the
resources we have left: ownership of the local lifetime context, of r, and
of the non-atomic invariant token.

Verifying replace. For replace, the λRust source code looks like this:

funrec replacen(c, x) ret ret :=
let c’ = ∗c in
let r = new(n) in
r :=n

∗c’;
c’ :=n

∗x;
delete(1, c); delete(n, x);
jump ret(r)

14 This corresponds to popping the
stack frame and thus releasing the
storage of local variables.

210

Part II: RustBelt Chapter 13: Modeling types with interior mutability

Proof outline for cell-replace.Jϝ ve αK ∗ Jϝ vl []K(q) ∗
(

(1) Jret C cont(ϝ vl []; r. r C own τ)K(t)
)
∗(

(2) Jx C own τK(t)
)
∗ Jc C own &αshr cell(τ)K(t) ∗ [NaInv : t.>]

>

Unfold Jown _K.own (own-ptr-own, page 135).
Unfold J&αshr _K.own (shr-ref-own) and Jcell(τ)K.shr (cell-shr).{
Jϝ vl []K(q) ∗ (1) ∗ (2) ∗

(
∃`′. c 7→ `′ ∗ .&α/t.Nshr.`

′

na
(
∃v. `′ 7→ v ∗ JτK.own(t, v)

))
∗

Dealloc(c, 1, 1) ∗ [NaInv : t.>]

}
>

let c’ = ∗c in (lrust-deref-na, `′ becomes c’){
Jϝ vl []K(q) ∗ (1) ∗ (2) ∗

(
(3) c 7→ c’ ∗ Dealloc(c, 1, 1)

)
∗(

(4) &α/t.Nshr.c’
na

(
∃v. c’ 7→ v ∗ JτK.own(t, v)

))
∗ [NaInv : t.>]

}
>

let r = new(JτK.size) in (lrust-new){
Jϝ vl []K(q) ∗ (1) ∗ (2) ∗ (3) ∗ r 7→ vr ∗ |vr| = JτK.size ∗

(
(5) Dealloc(r, JτK.size, JτK.size)

)
∗ [NaInv : t.>]

}
>

Use Jϝ vl []K(q) with Lalive-sem to get [α]q′ , closing view shift: (6) [α]q′ ≡−∗Nlft Jϝ vl []K(q).
With that new token, open borrow (4) via LftL-na-acc,
get closing view shift: (7) .

(
∃v. c’ 7→ v ∗ JτK.own(t, v)

)
≡−∗Nshr,Nlft [NaInv : t.Nshr.c’] ∗ [α]q′ .

{(1) ∗ (2) ∗ (3) ∗ c’ 7→ vc′ ∗ . JτK.own(t, vc′) ∗ r 7→ vr ∗ (5) ∗ (6) ∗ (7) ∗ [NaInv : t.> \ Nshr.c’]}>
r :=JτK.size

∗c’; (lrust-memcpy with |vr| = JτK.size, and |vc′ | = JτK.size by ty-size)
{(1) ∗ (2) ∗ (3) ∗ c’ 7→ vc′ ∗ JτK.own(t, vc′) ∗ r 7→ vc′ ∗ (5) ∗ (6) ∗ (7) ∗ [NaInv : t.> \ Nshr.c’]}>
Now things start to diverge from cell-get.
Fold r 7→ vc′ ∗ JτK.own(t, vc′) ∗ (5) into Jr C own τK(t). Unfold (2).{

(1) ∗ x 7→ vx ∗ JτK.own(t, vx) ∗
(
(8) Dealloc(x, JτK.size, JτK.size)

)
∗ (3) ∗ c’ 7→ vc′ ∗

Jr C own τK(t) ∗ (6) ∗ (7) ∗ [NaInv : t.> \ Nshr.c’]

}
>

c’ :=JτK.size
∗x; (lrust-memcpy with |vc′ | = JτK.size, and |vx| = JτK.size by ty-size)

{(1) ∗ x 7→ vx ∗ JτK.own(t, vx) ∗ (8) ∗ (3) ∗ c’ 7→ vx ∗ Jr C own τK(t) ∗ (6) ∗ (7) ∗ [NaInv : t.> \ Nshr.c’]}>
Close borrow (7) with v := vx, and then lifetime context (6).
{Jϝ vl []K(q) ∗ (1) ∗ x 7→ vx ∗ (8) ∗ (3) ∗ Jr C own τK(t) ∗ [NaInv : t.> \ Nshr]}>
delete(1, c); (lrust-delete, consumes (3))
delete(JτK.size, x); (lrust-delete, consumes x 7→ vx ∗ (8))
{Jϝ vl []K(q) ∗ (1) ∗ Jr C own τK(t) ∗ [NaInv : t.> \ Nshr]}>
jump ret(r) (by (1), using up all the other resources)

Figure 13.3: Proof outline for
Cell::replace.

And its type is:

replacesize(τ) : ∀α. fn(ϝ : ϝ ve α;&αshr cell(τ), τ)→ τ

This is very similar to what we saw for get, except that after putting a
copy of the old Cell content into r, we overwrite the Cell with what is
stored at x. Also, this time we do not assume τ copy.

Following S-fn and sem-fn-body, we have to show the following:{
Jϝ ve αK ∗ Jϝ vl []K(q) ∗ Jret C cont(ϝ vl []; r. r C own τ)K(t) ∗
Jc C own &αshr cell(τ), x C own τK(t) ∗ [NaInv : t.>]

}
call replaceJτK.size(c, x) ret ret

{True}
(cell-replace)

The proof outline for this is shown in Figure 13.3.

211

Part II: RustBelt Chapter 13: Modeling types with interior mutability

The first part of this proof works the same as it did with Cell::get.
The additional ownership of x is just carried along. The two proofs only
start to diverge after r :=n

∗c’, where we make a copy of the Cell’s
content and put it into the return value. Previously, we went on by closing
the borrow. But if we did that now, we would have to give up ownership
of JτK.own(t, vc′), which says that vc′ (the list of values that is now stored
both in c’ and r) is a valid instance of τ . Previously, τ was a Copy type
so this proposition was persistent; that is not the case in Cell::replace
though. Instead of closing the borrow again, we keep it open for now.

The next instruction is c’ :=n
∗x. We own the memory pointed to

by c’ because we got it out of the borrow, and we own the memory
pointed to by x because it was passed to us in an owned pointer, so we
can satisfy the precondition of lrust-memcpy (page 133). Now we are
ready to close the borrow again: the data stored at c’ changed to vx, and
we do own JτK.own(t, vx) because we know x has type own τ . Together
this means that the cell now contains a list of values that is valid for τ ,
and we can take all that ownership and put it back into the borrow.15
After closing the borrow, we can also run the closing part of Lalive-sem
to re-gain ownership of our lifetime contexts.

Next, we have to do some cleanup. delete(1, c); delete(JτK.size, x)
deallocates the memory that its arguments were passed in; just like before
we acquire the necessary precondition of lrust-delete from the fact that
c and x were fully owned pointers (own _), which means we have full
ownership of the memory and permission to deallocate it (own-ptr-own
on page 135).

And finally, jump ret(r) jumps to the return continuation. We have
set up r to point to an instance of τ (the data we got out of c’), so the
precondition Jr C own τK(t) is easily satisfied. Other than that, we only
need to pass on the lifetime context and non-atomic invariant token.

Remaining Cell methods. This completes the proof of the key Cell
operations. The full API surface of Cell includes some more functions.
Some of those are implemented entirely in safe code (and without access-
ing private fields) on top of Cell::get and Cell::replace, so from a
safety standpoint we already covered them. This includes, in particular,
Cell::set, which just calls Cell::replace and then throws away the
old value. Beyond this, we have the following operations that all “do
nothing” except for returning the input argument at a different type:

Cell::new : fn(T) -> Cell<T>

Cell::into_inner : fn(Cell<T>) -> T

Cell::get_mut : fn(&mut Cell<T>) -> &mut T

Cell::from_mut : fn(&mut T) -> &Cell<T>

All of these are based on the fact that ownership of a Cell<T> is
the same as ownership of T (cell-own), and thus the same goes for
&mut Cell<T> and &mut T. These types are identical and can be freely
converted back-and-forth.16 Cell only becomes special once shared refer-
ences are involved (cell-shr).

15 Of course this means we lose
ownership of JτK.own(t, vx). That
is expected; it reflects the fact that
the content of x was moved (not
just copied) into the cell. The only
remaining operation we perform
on x is to deallocate it, so we do
not care any more which values are
stored there.

16 In Rust terms, they can be
safely “transmuted”, referring to
the unsafe transmute operation
which is an unchecked cast, like
reinterpret_cast in C++.

212

Part II: RustBelt Chapter 13: Modeling types with interior mutability

The first three functions are direct realizations of this principle. The
fourth function is not, but it follows easily: we can turn the argument of
type &mut T into &mut Cell<T>, and then the shared reference &Cell<T>
is obtained via normal sharing that can be performed safely with C-share.

Beyond what we have proven, two more methods have been added
more recently: Cell:swap and Cell::as_slice_of_cells.

Cell::swap takes two &Cell<T> and swaps their content; proving
it should just be a more tedious variant of Cell::replace where two
Cell need to be opened at the same time (which we can do because the
namespace incorporates the location of the Cell).

Cell::as_slice_of_cells is another function that reflects a “safe
cast”, but it is a more interesting cast than the ones we just discussed
because it involves shared references. A slice is a dynamically sized array
in Rust, and this method turns a “shared cell of an array” into a “shared
array of cells”. λRust does not support dynamically sized types such as
slices, but we can recast this method into an equivalent operation on pairs,
turning a “shared cell of a pair” into a “shared pair of cells”:

fn(&Cell<(T, U)>) -> &(Cell<T>, Cell<U>)

This method was only added to stable Rust in late 2019 (long after the
initial publication of this work), so we did not consider it when designing
the semantic model of λRust. Unfortunately, it cannot easily be verified
with the setup we have described so far: the location-dependent namespace
in cell-shr becomes a problem here. The function as_pair_of_cells is
supposed to return a reference to two separate cells at different locations
(unless T has size 0), but the non-atomic borrow of &Cell<(T, U)> is tied
to the location of the product:

&κ/t.Nshr.`
na

(
∃v. ` 7→ v ∗ Jτ1 × τ2K.own(t, v)

)
The ` here is the place in memory where τ1 × τ2 begins, the first location
that this compound data occupies in memory. To split this into two
borrows, we would need the second borrow to have its namespace related
to the place in memory where the second component begins. Changing
the namespace of an already created borrow (or invariant) is impossible,
so we are stuck here.

One very invasive option to make this work is to change what hap-
pens when sharing of cell(τ1 × τ2) starts: we could put each compo-
nent of the pair into a separate borrow at the right location, so that
as_pair_of_cells only has to split ownership of two already separate
borrows. However, this requires some fundamental refactoring of our
logical relation, and it is unclear how that would affect everything else.
Verifying such a cast is thus left to future work.

13.2 Mutex

Mutex is the other example of interior mutability that we presented in
§8.6. Mutex<T> uses a lock to safely grant multiple threads read and write
access to a shared object of type T. The real Mutex uses platform-specific

213

Part II: RustBelt Chapter 13: Modeling types with interior mutability

synchronization primitives but our model is implemented as a simple
spinlock.

13.2.1 Semantic interpretation of Mutex

We start as usual by giving its size and ownership predicate:

Jmutex(τ)K.size := 1 + JτK.size
Jmutex(τ)K.own(t, v) := Jbool× τK.own(t, v) (mutex-own)

When it is not shared, mutex(τ) is exactly the same as a pair of a bool
(representing the status of the spinlock, and of an object of type τ (the
content). ty-size holds trivially.

The sharing predicate is more complex: it cannot use fractured borrows,
because we cannot afford getting only a fraction of ownership; and it
cannot use non-atomic borrows, because mutexes are Sync and thus can be
shared across thread boundaries (that is, of course, their entire purpose),
but non-atomic borrows would tie the predicate to a particular thread
identifier t as we have seen with cell(τ). Instead, it uses atomic borrows as
introduced in §11.4 (page 148). These are basically normal Iris invariants
(providing full access to their content for atomic operations in any thread),
except that they are additionally tied to a lifetime so that the invariant
gets “canceled automatically” when the lifetime ends.

For Mutex’s sharing predicate, we can use atomic borrows because the
content of its borrow will only get accessed when changing the status of
the lock, and doing so will require atomic memory accesses. Of course,
this corresponds to the fact that, in our spinlock implementation, we are
only using atomic sequentially consistent instructions to read or write the
status flag. Using non-atomic accesses would lead to data races.

Thus we define the sharing predicate as follows:

Jmutex(τ)K.shr(κ, t, `) := ∃κ′. κ v κ′ ∗&κ/Nrust
at Mτ (κ′, `, t)

(mutex-shr)

where

Mτ (κ′, `, t) := ` 7→ true ∨

` 7→ false ∗&κ
′

full
(
∃v. (`+ 1) 7→ v ∗ JτK.own(t, v)

)
(mutex-inv)

This is quite a mouthful: first, we use an existential quantification at
the beginning to close the predicate under shorter lifetimes, satisfying
ty-shr-mono. We use an atomic borrow to share ownership of the status
flag at location `. This defines an invariant that is maintained until κ
ends. For invariants like this that are required by the type system or
unsafe libraries, we use the Nrust namespace-17 The invariant will come up
a lot in the following, so we introduce the name Mτ (κ′, `, t) for a mutex
guarding data of type τ in thread t at location ` shared for lifetime κ′.
This invariant can be in one of two states: In the first state, the flag is
true, in which case the lock is locked and no other resource is stored
in the borrow. Ownership of the content is currently held by whichever

17 This namespace is disjoint from
Nlft, and nothing else really matters
about it.

214

Part II: RustBelt Chapter 13: Modeling types with interior mutability

thread acquired the lock. In the second state, the flag is false. This
means the lock is unlocked, and the borrow also stores the ownership of
the content of type τ at location `+ 1. When acquiring or releasing the
lock, we can atomically open the atomic borrow and change the branch
of the disjunction, thus acquiring or releasing ownership of the content.

Curiously, ownership of the content is wrapped in a full borrow. One
might expect instead that it should be directly contained in the outer
atomic borrow. In that case, acquiring the lock would result in acquiring
full (unborrowed) ownership of the content of the mutex. That, however,
does not work: we would be unable to show ty-share. Remember that
to change the borrowed proposition, LftL-bor-acc-strong requires us
to prove a view shift back from the changed borrow to the original one
(so that, at the end of the lifetime, the inheritance can be satisfied). Here,
this means we would have to prove a view shift back from Mτ (κ′, `, t) to
∃v. ` 7→ v ∗ Jbool× τK.own(t, v). But in the left case of the disjunction,
we simply do not own the memory required by the right-hand side: we
only own the location storing the Boolean flag, but we also need to own
the memory storing the content of type τ .

To understand intuitively why this makes sense, imagine κ′ ends while
the lock is held by some thread that consequently owns the content.18 In
this case, ownership of the content would never be returned to the borrow.
However, when κ′ ends, the Mutex is again fully owned by someone, which
means they expect to be the exclusive owner of the content! This is why
the full borrow is necessary: when taking the lock, one gets the inner
resource only under a borrow at lifetime κ′, guaranteeing that ownership
is returned when κ′ ends.

Well-formedness. We focus on ty-share, the only non-trivial part of
well-formedness. Concretely, we need to show the following:

&κfull
(
∃w. ` 7→ w ∗ Jbool× τK.own(t, w)

)
∗ [κ]q ≡−∗Nlft

[κ]q ∗ ∃κ
′. κ v κ′ ∗&κ/Nrust

at Mτ (κ′, `, t)

In a first step, we split up the bool× τ that we start with into its two
components:

&κfull
(
∃w. ` 7→ w ∗ Jbool× τK.own(t, w)

)
∗ [κ]q ≡−∗Nlft

&κfull
(
∃b. ` 7→ b ∗ (b = true ∨ b = false)

)
∗

&κfull
(
∃v. (`+ 1) 7→ vJτK.own(t, v)

)
∗ [κ]q

This part of the proof relies on LftL-bor-acc-strong (page 155), bool-
own (page 135), pair-own (page 135), lrust-heap-app (page 133), and
LftL-bor-split (page 142).

In the second step, we use LftL-bor-acc-strong again to open the
borrow of the first component (the Boolean), and we pick Mτ (κ′, `, t) for
the new content Q of the borrow. The backwards direction from Q to
the current content ∃b. ` 7→ b ∗ (b = true ∨ b = false) is easy: we throw
away the inner borrow in case ` 7→ false. The forwards direction is also
easy since we do in fact own that borrow of `+ 1, so we can move it into
the Boolean borrow if b = false (and throw it away otherwise).19

With this, ty-share is easily proven by picking κ′ := κ.

18 That is possible, for example, if
the MutexGuard is leaked and hence
its destructor never gets called.

19 The only resources thrown away
here are borrows, which is okay
because the ownership they govern
will be recovered when the lifetime
ends and the inheritance gets used.

215

Part II: RustBelt Chapter 13: Modeling types with interior mutability

Marker traits. We also have to show that our interpretation adequately re-
flects the conditions under which Mutex<T> is Copy/Send/Sync. Mutex<T>
is never Copy, so there is nothing to show there.20

However, Mutex<T> is both Send and Sync under the assumption that
T is Send.21 This corresponds to the fact that both the ownership and
sharing predicate for mutex(τ) only use t for the ownership predicate of τ .
So, if we have |= τ send and its ownership predicate does not depend on
t, then we easily have both |= mutex(τ) send and |= mutex(τ) sync.

13.2.2 Semantic interpretation of MutexGuard

The Rust mutex library actually consists of two types: besides Mutex<T>,
which represents a container guaranteeing mutual exclusion for accesses to
some data of type T, we also have MutexGuard<’a, T>, which is the type
returned by Mutex::lock. Owning this type reflects that we currently
(for lifetime ’a) have mutable access to some data of type T guarded by
a Mutex<T>. MutexGuard<’a, T> acts basically like &’a mut T, except
that the implicit destructor that runs when MutexGuard<’a, T> goes out
of scope also releases the mutex it is associated with.

This means that on top of defining the semantic model of mutex(τ),
we also have to define a model of mutex_guard(κ, τ), and use that model
when verifying Mutex::lock. Operationally, a MutexGuard<’a, T> is
a pointer to the Mutex<T> it is locking. Thus it has size 1 in λRust.
Ownership of a MutexGuard<’a, T> means that we are the party that
successfully acquired the lock, i.e., we own the full borrow that it is
guarding. We also put the lock invariant (the atomic borrow) in here,
because MutexGuard needs access to that to release the lock when it gets
dropped.

Jmutex_guard(κ, τ)K.size := 1

Jmutex_guard(κ, τ)K.own(t, [`]) := ∃κ′. κ v κ′ ∗&κ/Nrust
at Mτ (κ′, `, t) ∗

&κ
′

full

(
∃v. (`+ 1) 7→ v ∗ JτK.own(t, v)

)
(mutexguard-own)

The full borrow here formally reflects the idea that MutexGuard<’a, T>
is almost the same as &’a mut T: they both share this part of their
interpretation.

Likewise, the type &’b MutexGuard<’a, T> is almost the same as
&’b &’a mut T, also inheriting the complexities of sharing mutable ref-
erences.22 First of all, since MutexGuard<’a, T> itself is a pointer to a
Mutex<T>, we need to make sure that when we share that pointer we can
still dereference it: the pointer becomes read-only, and we use a sharing
predicate similar to “simple types” in §10.4:

Jmutex_guard(κ, τ)K.shr(κ, t, `′) := ∃`. &κfrac(λq. `′
q7−→ `) ∗ . . .

Remember that `′ here is the location at which the shared MutexGuard is
stored, so it is a pointer to a pointer. ` is the location of the Mutex (same
as the ` in the ownership predicate above).

To complete the sharing predicate, intuitively we have to say that
at location ` + 1, we can find a shared τ . This would be expressed as

20 This is crucial for soundness:
when a Mutex is currently locked,
other threads must not read from it
(and in particular make no copies of
it) lest they cause a data race. This
matches the fact that the sharing
predicate does not actually own the
content of the Mutex when the lock
is held.

21 Curiously, this is a quite literal
type system translation of “Mutex
adds synchronization to a type”.

22 The complex sharing predicate
is needed to verify soundness
of MutexGuard::deref, which
takes &’b MutexGuard<’a, T> as
argument and returns &’b T. If
it were not for that operation, we
could use a trivial sharing predicate
of True.

216

Part II: RustBelt Chapter 13: Modeling types with interior mutability

. JτK.shr(κ u κ′, t, ` + 1).23 We use lifetime κ u κ′ to incorporate both
the lifetime for which the MutexGuard<’a, T> itself is valid (the ’a) as
well as the lifetime of the shared reference to this guard. However, just
like with owned pointers and mutable references in §12.2, this definition
fails to satisfy ty-share. We have to use delayed sharing again: instead
of sharing the instance of τ when we share the mutex_guard(κ, τ), we
make the sharing predicate of mutex_guard a view shift that takes a step,
and only after completing the view shift we get the sharing predicate of τ .
Thus, the sharing predicate of mutex_guard looks as follows:

Jmutex_guard(κ, τ)K.shr(κ′, t, `′) := ∃`. &κfrac(λq. `′
q7−→ `) ∗

�∀q. [JκK u κ′]q −∗ |VNshr∪Nlft Nlft . |VNlft Nshr∪Nlft(
JτK.shr(JκK u κ′, t, `+ 1) ∗ [JκK u κ′]q

)
(mutexguard-shr)

Well-formedness. The proof of ty-share proceeds in much the same
way as it did in §12.2 for mutable references. The other properties required
for semantic types pose no difficulties.

Marker traits. MutexGuard<’a, T> is not Copy, so no proof is required.
For Send and Sync, while our ownership predicate inherits its “send-

abiltiy” from the interpretation of τ (so we could prove that |= τ send
implies |= mutex_guard(κ, τ) send), the real MutexGuard<’a, T> is ac-
tually never Send because some platform-specific locking APIs do not
permit releasing a lock from a different thread than the one that ac-
quired it. However, MutexGuard<’a, T> is Sync under some conditions.
In fact, when we performed this verification, MutexGuard was always
Sync, no matter whether T was Sync or not—but if we try to prove
|= mutex_guard(κ, τ) sync, we will quickly notice that this requires
|= τ sync. This is not a limitation in our model, it is a bug in Rust!24 We
have submitted a fix to the Rust project such that MutexGuard<’a, T> is
only Sync when T is, and it is easy to show the corresponding implication
for our semantic model as defined above.

13.2.3 Soundness of the public operations

This completes the definitions of the types and verification of their basic
properties. Now we take a close look at the two key operations of Mutex,
acquiring and releasing the lock (Mutex::lock and MutexGuard::drop).
We will also verify MutexGuard::deref_mut, which is the method that
provides a mutable reference to the lock contents and thus enables actually
accessing and mutating the data guarded by the lock. The types of these
methods are as follows:25

Mutex::lock : fn<’a>(&’a Mutex<T>) -> MutexGuard<’a, T>

MutexGuard::deref_mut : fn<’a, ’b>(&’b mut MutexGuard<’a, T>) -> &’b mut T

MutexGuard::drop : fn(MutexGuard<’_, T>)

23 We need the . because
MutexGuard<’a, T> only uses T
behind a pointer indirection, and
thus serves as a “guard” for recur-
sive types in Rust.

24 Jung, “MutexGuard<Cell<i32>>
must not be Sync”, 2017 [Jun17].

25 We are being a bit sloppy here
with the type of MutexGuard::drop.
The actual drop method one
would write in Rust has type
fn(&mut MutexGuard<’_, T>) -> ().
However, it cannot safely be called
at that type, it can only be called
by the implicit drop code that
gets run when a variable of type
MutexGuard goes out of scope. What
can be safely called is the free
function drop, and its type (spe-
cialized to MutexGuard) is indeed
fn(MutexGuard<’_, T>) -> ().
Then, as usual, we omit the ()
return type.

217

Part II: RustBelt Chapter 13: Modeling types with interior mutability

Verifying Mutex::lock. The λRust translation of this method, lock,
looks as follows:

funrec lock(m) ret ret :=
let m’ = ∗m in
delete(1, m);
let r = new(1) in
r := m’ ;
letcont loop(m’, r) :=

let b = CAS(m’, false, true) in
if b then jump ret(r) else jump loop(m’, r)

in jump loop(m’, r)

And its type is:

lock : ∀α. fn(ϝ : ϝ ve α;&αshr mutex(τ))→ mutex_guard(α, τ)

In the beginning we have the usual preamble: m is a pointer to a shared
reference to a mutex, so we get rid of the extra indirection. We also
delete the memory the argument was passed in.26 Then we allocate space
for the return value, which has type mutex_guard, meaning it is just a
pointer to the mutex it is guarding. Finally, we come to the actual meat
of this function: loop implements a spinlock, which we use to model
the platform-specific lock APIs that Rust actually uses under the hood.
The loop keeps trying to compare-and-swap the lock state from false to
true.27 The CAS returns whether it succeeded, so once it returns true we
know it successfully changed the lock state and thus we currently own
the lock—so we are done and can return. Otherwise, we retry.

Following S-fn and sem-fn-body, we have to show the following:
Jϝ ve αK ∗ Jϝ vl []K(q) ∗
Jret C cont(ϝ vl []; r. r C own mutex_guard(α, τ))K(t) ∗
Jm C own &αshr mutex(τ)K(t) ∗ [NaInv : t.>]

call lock(m) ret ret

{True}
(mutex-lock)

The proof outline for this is shown in Figure 13.4.
The part before the loop is rather boring and very similar to what

we have already seen in §13.1, so we focus on the loop itself, which is
described by the following lemma:

Jϝ ve αK ∗ Jϝ vl []K(q) ∗
Jret C cont(ϝ vl []; r. r C own mutex_guard(α, τ))K(t) ∗
Dealloc(r, 1, 1) ∗ r 7→ m’ ∗
α v κ′ ∗&α/Nrust

at Mτ (κ′, m’, t) ∗ [NaInv : t.>]

jump loop(m’, r)
{True}

(mutex-lock-loop)

To prove this lemma, we apply hoare-rec (page 133), which means we
may assume that the specification has already been proven for recursive

26 We usually do this later, but here
doing it early helps to keep the loop
cleaner.

27 The only reason we bind the
result of the CAS to a name (b) is to
later make the proof outline easier
to write. Likewise, we would not
usually make m’ and r parameters
of the loop continuation, but doing
so makes it easier to state the loop
invariant as a separate lemma.

218

Part II: RustBelt Chapter 13: Modeling types with interior mutability

Proof outline for mutex-lock.{
Jϝ ve αK ∗ Jϝ vl []K(q) ∗

(
(1) Jret C cont(ϝ vl []; r. r C own mutex_guard(α, τ))K(t)

)
∗

Jm C own &αshr mutex(τ)K(t) ∗ [NaInv : t.>]

}
>

Unfold Jown _K.own (own-ptr-own, page 135).
Unfold J&αshr _K.own (shr-ref-own) and Jmutex(τ)K.shr (mutex-shr).{
Jϝ vl []K(q) ∗ (1) ∗ m 7→ `′ ∗ Dealloc(m, 1, 1) ∗ .(α v κ′) ∗ .&α/Nrust

at Mτ (κ′, `′, t) ∗ [NaInv : t.>]
}
>

let m’ = ∗m in (lrust-deref-na, `′ becomes m’){
Jϝ vl []K(q) ∗ (1) ∗ m 7→ m’ ∗ Dealloc(m, 1, 1) ∗ α v κ′ ∗&α/Nrust

at Mτ (κ′, m’, t) ∗ [NaInv : t.>]
}
>

delete(1, m); (lrust-delete, consumes m 7→ m’ ∗ Dealloc(m, 1, 1)){
Jϝ vl []K(q) ∗ (1) ∗ [NaInv : t.>]

}
>

let r = new(1) in (lrust-new)
{Jϝ vl []K(q) ∗ (1) ∗ r 7→ vr ∗ Dealloc(r, 1, 1) ∗ [NaInv : t.>]}>
r := m’ ; (lrust-assign-na){
Jϝ vl []K(q) ∗ (1) ∗ r 7→ m’ ∗

(
(2) Dealloc(r, 1, 1)

)
∗ [NaInv : t.>]

}
>

letcont loop(m’, r) := . . . in jump loop(m’, r) (mutex-lock-loop)

Proof outline for mutex-lock-loop.
(We keep using the abbreviation numbers from above.)
Use hoare-rec. Induction hypothesis: mutex-lock-loop{
Jϝ ve αK ∗ Jϝ vl []K(q) ∗ (1) ∗ (2) ∗ r 7→ m’ ∗ α v κ′ ∗

(
(3) &α/Nrust

at Mτ (κ′, m’, t)
)
∗ [NaInv : t.>]

}
>

Use Jϝ vl []K(q) with Lalive-sem to get [α]q′ , closing view shift: (4) [α]q′ ≡−∗Nlft Jϝ vl []K(q).
With that token, open atomic borrow (3) via LftL-at-acc-tok (page 148),
get closing view shift: (5) .Mτ (κ′, m’, t) ≡−∗>\Nrust > [α]q′ . Unfold Mτ (κ′, m’, t) (mutex-inv).{

(1) ∗ (2) ∗ r 7→ m ∗
(

m’ 7→ true ∨ m’ 7→ false ∗ . (6) &κ
′

full
(
∃v. (m’ + 1) 7→ v ∗ JτK.own(t, v)

))
∗

(4) ∗ (5) ∗ [NaInv : t.>]

}
>\Nrust

let b = CAS(m’, false, true) in (lrust-cas-int){
(1) ∗ (2) ∗ r 7→ m ∗ m’ 7→ true ∗

(
b = false ∨ b = true ∗ (6)

)
∗ (4) ∗ (5) ∗ [NaInv : t.>]

}
>\Nrust

Fold Mτ (κ′, m’, t) with left disjunct (mutex-inv).{
(1) ∗ (2) ∗ r 7→ m ∗Mτ (κ′, m’, t) ∗

(
b = false ∨ b = true ∗ (6)

)
∗ (4) ∗ (5) ∗ [NaInv : t.>]

}
>\Nrust

Close borrow (5), then lifetime context (4).{
Jϝ vl []K(q) ∗ (1) ∗ (2) ∗ r 7→ m ∗

(
b = false ∨ b = true ∗ (6)

)
∗ [NaInv : t.>]

}
>

if b
Case b = true.
{Jϝ vl []K(q) ∗ (1) ∗ (2) ∗ r 7→ m ∗ (6) ∗ [NaInv : t.>]}>
Fold r 7→ m ∗ (2) ∗ α v κ′ ∗&α/Nrust

at Mτ (κ′, m’, t) ∗ (6) into Jr C own mutex_guard(α, τ)K(t).
{Jϝ vl []K(q) ∗ (1) ∗ Jr C own mutex_guard(α, τ)K(t) ∗ [NaInv : t.>]}>
then jump ret(r) (by (1), using up all the other resources)

Case b = false.
{Jϝ vl []K(q) ∗ (1) ∗ (2) ∗ r 7→ m ∗ [NaInv : t.>]}>
else jump loop(m’, r) (induction hypothesis mutex-lock-loop)

Figure 13.4: Proof outline for
Mutex::lock.

219

Part II: RustBelt Chapter 13: Modeling types with interior mutability

jumps to loop. Another way to view this is that the precondition of
this lemma becomes the loop invariant, and we have to re-establish that
invariant before jumping back to the beginning of the loop.

The first and main operation inside the loop is the CAS on m’. To
be able to verify this step, we need access to m’ 7→ _, which we obtain
by opening the atomic borrow (again using Lalive-sem to get hold of
the appropriate lifetime token). CAS is an atomic operation, so we are
permitted to open the atomic borrow around it, but we have to close the
borrow again immediately after the operation completed. After opening
the atomic borrow, we have two possible cases: either m’ already points
to true, so the CAS fails and nothing changes (someone else holds the
lock and we will retry later), or else m’ points to false and the CAS will
succeed (we just acquired the lock). In the latter case, the atomic borrow
also grants us ownership of &κ

′

full
(
∃v. (m’ + 1) 7→ v ∗ JτK.own(t, v)

)
, the

full borrow managing the “content” of the lock. Either way we can use
lrust-cas-int (page 133) to justify this operation, and afterwards we
have m’ 7→ true.28 We use that ownership to close the atomic borrow
again (so, we pick the left disjunct of Mτ (κ′, `, t) when re-establishing
the borrowed proposition). This means that if we previously acquired
ownership of the lock content, we do not have to give it back! The value
of b tells us if the CAS succeeded (b = true) or not, and if it did, we
additionally own the lock content.29

After completing the CAS, the code inspects the result b. If the CAS
failed, we simply go around the loop once more, for which we make
use of the “induction hypothesis” granted by hoare-rec. If the CAS
succeeded, we own the lock content, which together with our remaining
ownership is sufficient to establish that r satisfies the ownership predicate
for mutex_guard: we have Jr C own mutex_guard(α, τ)K(t). This means
we can safely return.

Verifying MutexGuard::deref_mut. Of course, acquiring the lock is only
the first step in interacting with it. Next, the program will typically want
to access the lock. This is done via MutexGuard::deref_mut, which
returns a mutable reference to the lock content.30

The λRust code for this method looks as follows:

funrec deref_mut(g) ret ret :=
let g’ = ∗g in
delete(1, g);
let m = ∗g’ in
let r = new(1) in
r := m.1 ;
jump ret(r)

And its type is:

deref_mut :
∀α, β. fn(ϝ : ϝ ve β, β ve α;&βmut mutex_guard(α, τ))→ &βmut τ

28 This means immediately after the
CAS, the lock is definitely held by
someone, but not necessarily by us.

29 This is an example of conditional
ownership transfer: if the CAS suc-
ceeded, this operation transferred
ownership of the lock content from
the atomic borrow to us (reflecting
that we now hold the lock); if the
CAS failed, nothing got transferred.

30 There is also MutexGuard::deref
which turns &’b MutexGuard<’a, T>
into &’b T. We have verified it in
Coq as well, but do not consider
it here because it is conceptually
very similar to deref_mut, except
for complications caused by delayed
sharing.

220

Part II: RustBelt Chapter 13: Modeling types with interior mutability

In this type, β ve α reflects the implicit well-formedness condition enforced
by the Rust compiler that the referent type of a reference must outlive
the lifetime of the reference.

The code for deref_mut is obscured mostly by the fact that there are
so many pointer indirections going on. The argument g is a pointer to a
&βmut mutex_guard(α, τ) (because all arguments get passed with an extra
pointer indirection), which is a pointer to a mutex_guard, which is a
pointer to a mutex. There are three indirections. We start by unfolding
two of them, so m is a pointer to a mutex. The actual content of the lock
is stored at offset 1,31 so we compute that pointer via pointer arithmetic
(m.1) and then return it in a freshly allocated r. We also have to clean up
the memory at g that was used to pass our argument.

Following S-fn and sem-fn-body as usual, we have to show the
following:

Jϝ ve β, β ve αK ∗ Jϝ vl []K(q) ∗
Jret C cont(ϝ vl []; r. r C own &βmut τ)K(t) ∗
Jg C own &βmut mutex_guard(α, τ)K(t) ∗ [NaInv : t.>]

call deref_mut(g) ret ret

{True}
(mutexguard-deref-mut)

The proof outline for this is shown in Figure 13.5.
The heart of the proof is about re-shaping the ownership predicate of

a mutable reference to mutex_guard(α, τ) (mutexguard-own) into the
ownership predicate of a mutable reference to τ . Unfolding the former,
what we get is

&βfull
(
∃g. g’ 7→ m ∗ ∃κ′. α v κ′ ∗&α/Nrust

at Mτ (κ′, m, t) ∗

&κ
′

full
(
∃v. (m + 1) 7→ v ∗ JτK.own(t, v)

))
In the second line we can already see the mutable reference that we are
looking for (this matches mut-ref-own exactly), but it is (a) nested
within another borrow, and (b) at the wrong lifetime. Intuitively, a
borrowed MutexGuard<’_, T> is like a doubly-borrowed T; what we have
to do in this proof is flatten this nesting and show that the lifetimes work
out.

For the first problem, we start by using LftL-bor-exists and LftL-
bor-split (page 142) to push the borrow down over existential quantifi-
cations and separating conjunctions. In the end, we arrive at

&βfull&
κ′

full

(
∃v. (m + 1) 7→ v ∗ JτK.own(t, v)

)
(and some other propositions that we ignore here). Now we can use LftL-
bor-unnest (page 155) to turn the nested borrow into a flat borrow
at the intersected lifetime β u κ′. All that is left is to show β v β u κ′,
which follows from β v α (a precondition of MutexGuard::deref_mut)
and α v κ′ (part of the ownership predicate of mutex_guard(α, τ)).

31 Remember that at offset 0 we
keep the Boolean flag controlling
the spinlock.

221

Part II: RustBelt Chapter 13: Modeling types with interior mutability

Proof outline for mutexguard-deref-mut.{
Jϝ ve β, β ve αK ∗ Jϝ vl []K(q) ∗

(
(1) Jret C cont(ϝ vl []; r. r C own &βmut τ)K(t)

)
∗

Jg C own &βmut mutex_guard(α, τ)K(t) ∗ [NaInv : t.>]

}
>

Unfold Jown _K.own (own-ptr-own, page 135).
Unfold J&βmut _K.own (mut-ref-own).{
Jϝ vl []K(q) ∗ (1) ∗ g 7→ `′ ∗

(
(2) Dealloc(g, 1, 1)

)
∗

.&βfull
(
∃w. `′ 7→ w ∗ Jmutex_guard(α, τ)K.own(t, w)

)
∗ [NaInv : t.>]

}
>

let g’ = ∗g in (lrust-deref-na, `′ becomes g’){
Jϝ vl []K(q) ∗ (1) ∗ g 7→ g’ ∗ (2) ∗&βfull

(
∃w. g’ 7→ w ∗ Jmutex_guard(α, τ)K.own(t, w)

)
∗ [NaInv : t.>]

}
>

delete(1, g); (lrust-delete, consumes g 7→ g’ ∗ (2)){
Jϝ vl []K(q) ∗ (1) ∗&βfull

(
∃w. g’ 7→ w ∗ Jmutex_guard(α, τ)K.own(t, w)

)
∗ [NaInv : t.>]

}
>

Use LftL-bor-exists (page 142) and then LftL-bor-split.{
Jϝ vl []K(q) ∗ (1) ∗&βfull g’ 7→ vg′ ∗&βfullJmutex_guard(α, τ)K.own(t, vg′) ∗ [NaInv : t.>]

}
>

Unfold Jmutex_guard(α, τ)K.own (mutexguard-own).
Again use LftL-bor-exists and then repeatedly LftL-bor-split.
Throw away &βfull&

α/Nrust
at Mτ (κ′, `′′, t).Jϝ vl []K(q) ∗ (1) ∗
(

(3) &βfull g’ 7→ `′′
)
∗
(

(4) &βfull α v κ′
)
∗

&βfull&
κ′

full

(
∃v. (`+ 1) 7→ v ∗ JτK.own(t, v)

)
∗ [NaInv : t.>]

>

Use Jϝ vl []K(q) with Lalive-sem to get [β]q′ , closing view shift: (5) [β]q′ ≡−∗Nlft Jϝ vl []K(q).
Open (4) with [β]q′ (LftL-bor-acc), copy .α v κ′, close it again (and throw the borrow away).
Open (3) with [β]q′ , get closing view shift: (6) . g’ 7→ `′′ ≡−∗Nlft &

β
full g’ 7→ `′′ ∗ [β]q′ .{

(1) ∗ g’ 7→ `′′ ∗ .α v κ′ ∗&βfull&
κ′

full

(
∃v. (`′′ + 1) 7→ v ∗ JτK.own(t, v)

)
∗ (5) ∗ (6) ∗ [NaInv : t.>]

}
>

let m = ∗g’ in (lrust-deref-na, `′′ becomes m)
Close borrow (6), then lifetime context (5). Throw away &βfull g’ 7→ `′′.{
Jϝ vl []K(q) ∗ (1) ∗ α v κ′ ∗&βfull&

κ′

full

(
∃v. (m + 1) 7→ v ∗ JτK.own(t, v)

)
∗ [NaInv : t.>]

}
>

Use LftL-bor-unnest with wp-step over the next step of computation.
let r = new(1) in (lrust-new){
Jϝ vl []K(q) ∗ (1) ∗ r 7→ vr ∗ Dealloc(r, 1, 1) ∗&βuκ

′

full

(
∃v. (m + 1) 7→ v ∗ JτK.own(t, v)

)
∗ [NaInv : t.>]

}
>

From Jϝ ve β, β ve αK we have β v α, so with α v κ′ we have β v κ′. Thus β v β u κ′.
Use LftL-bor-shorten to change lifetime of full borrow to β.{
Jϝ vl []K(q) ∗ (1) ∗ r 7→ vr ∗ Dealloc(r, 1, 1) ∗&βfull

(
∃v. (m + 1) 7→ v ∗ JτK.own(t, v)

)
∗ [NaInv : t.>]

}
>

r := m.1 ; (lrust-assign-na)
Let `r := m+ 1.{
Jϝ vl []K(q) ∗ (1) ∗ r 7→ `r ∗ Dealloc(r, 1, 1) ∗&βfull

(
∃v. `r 7→ v ∗ JτK.own(t, v)

)
∗ [NaInv : t.>]

}
>

Fold r 7→ `r ∗ Dealloc(r, 1, 1) ∗&βfull
(
∃v. `r 7→ v ∗ JτK.own(t, v)

)
into Jr C own &βmut τK(t) (mut-ref-own).{

Jϝ vl []K(q) ∗ (1) ∗ Jr C own &βmut τK(t) ∗ [NaInv : t.>]
}
>

jump ret(r) (by (1), using up all the other resources)

Figure 13.5: Proof outline for
MutexGuard::deref_mut.

222

Part II: RustBelt Chapter 13: Modeling types with interior mutability

Proof outline for mutexguard-drop.{
Jϝ ve αK ∗ Jϝ vl []K(q) ∗

(
(1) Jret C cont(ϝ vl []; r. r C own ())K(t) ∗

Jg C own mutex_guard(α, τ)K(t) ∗ [NaInv : t.>]

}
>

Unfold Jown _K.own (own-ptr-own, page 135).
{Jϝ vl []K(q) ∗ (1) ∗ g 7→ `′ ∗ Dealloc(g, 1, 1) ∗ .Jmutex_guard(α, τ)K.own(t, `′) ∗ [NaInv : t.>]}>
let m = ∗g in (lrust-deref-na, `′ becomes m)
{Jϝ vl []K(q) ∗ (1) ∗ g 7→ m ∗ Dealloc(g, 1, 1) ∗ Jmutex_guard(α, τ)K.own(t, m) ∗ [NaInv : t.>]}>
delete(1, g); (lrust-delete, consumes g 7→ m ∗ Dealloc(g, 1, 1))
{Jϝ vl []K(q) ∗ (1) ∗ Jmutex_guard(α, τ)K.own(t, m) ∗ [NaInv : t.>]}>
Unfold Jmutex_guard(α, τ)K.own (mutexguard-own), throw away α v κ′.{
Jϝ vl []K(q) ∗ (1) ∗

(
(2) &α/Nrust

at Mτ (κ′, m, t)
)
∗
(

(3) &κ
′

full
(
∃v. (m + 1) 7→ v ∗ JτK.own(t, v)

))
∗ [NaInv : t.>]

}
>

Use Jϝ vl []K(q) with Lalive-sem to get [α]q′ , closing view shift: (4) [α]q′ ≡−∗Nlft Jϝ vl []K(q).
With this token, open atomic borrow (2) via LftL-at-acc-tok,
get closing view shift: (5) .Mτ (κ′, m, t) ≡−∗>\Nrust > [α]q′ . Unfold Mτ (κ′, m, t) (mutex-inv).{

(1) ∗
(

m 7→ true ∨ m 7→ false ∗ .(3)
)
∗ (3) ∗ (4) ∗ (5) ∗ [NaInv : t.>]

}
>\Nlft

m :=sc false; (lrust-assign-na){
(1) ∗ α v κ′ ∗

(
m 7→ false ∨ m 7→ false ∗ (3)

)
∗ (3) ∗ (4) ∗ (5) ∗ [NaInv : t.>]

}
>\Nlft

In both disjuncts, we have m 7→ false. Throw away the extra (3) if we are in the right disjunct.
{(1) ∗ m 7→ false ∗ (3) ∗ (4) ∗ (5) ∗ [NaInv : t.>]}>\Nlft

Fold Mτ (κ′, m, t) with right disjunct (mutex-inv).
{(1) ∗Mτ (κ′, m, t) ∗ (4) ∗ (5) ∗ [NaInv : t.>]}>\Nlft

Close borrow (5), then lifetime context (4).
{Jϝ vl []K(q) ∗ (1) ∗ [NaInv : t.>]}>
let r = new(0) in (lrust-new)
{Jϝ vl []K(q) ∗ (1) ∗ r 7→ ε ∗ Dealloc(r, 0, 0) ∗ [NaInv : t.>]}>
jump ret(r) (by (1), using up all the other resources)

Figure 13.6: Proof outline for
MutexGuard::drop.Verifying MutexGuard::drop. When the user does not need the lock

any more, it has to be released again. This typically happens implic-
itly when the MutexGuard goes out of scope, at which point Rust calls
MutexGuard::drop.

The λRust code for this method looks as follows:

funrec drop(g) ret ret :=
let m = ∗g in
delete(1, g);
m :=sc false;
let r = new(0) in
jump ret(r)

And its type is:

drop : ∀α. fn(ϝ : ϝ ve α; mutex_guard(α, τ))→ ()

The only interesting operation in this function is m :=sc false, which
sets the lock flag to false in a thread-safe way (i.e., using an atomic
access). The return type () has size 0, so we “allocate” it by asking for a
zero-sized block of memory. Back in §9.2, we defined new to work correctly
for all sizes, including 0.

223

Part II: RustBelt Chapter 13: Modeling types with interior mutability

Following S-fn and sem-fn-body, we have to show:{
Jϝ ve αK ∗ Jϝ vl []K(q) ∗ Jret C cont(ϝ vl []; r. r C own ())K(t) ∗
Jg C own mutex_guard(α, τ)K(t) ∗ [NaInv : t.>]

}
call drop(g) ret ret

{True}
(mutexguard-drop)

The proof outline for this is depicted in Figure 13.6.
To verify the atomic release of the lock, we make use of the atomic

borrow &α/Nrust
at Mτ (κ′, m, t) that is part of the ownership predicate for

mutex_guard(α, τ). After opening the borrow, we know that m stores ei-
ther true (lock currently held) or false (lock currently not held).32
We do not actually care which case we are in: either way, we can
write false into m. To close the atomic borrow again, we need to re-
establish Mτ (κ′, m, t), and since m 7→ false this means we need to also
provide ownership of the lock content. (Of course, this is exactly what
one would expect when releasing a lock.) This ownership is part of
Jmutex_guard(α, τ)K.own, so we can easily close the borrow and finish
the proof.

This completes the interesting part of the correctness proof for Mutex
and MutexGuard. There are a few more methods (such as the constructor
Mutex::new), but their proofs do not demonstrate anything new. The
dedicated reader can find them in our Coq development.33

32 Given that we are holding the
lock, it may seem strange that we
cannot exclude the case m 7→ false
here, which should be impossible.
Indeed we could extend the mutex
invariant M with a token to be able
to prove that the lock must be held
whenever we own a mutex_guard,
but doing so would not actually
make the proof any easier.

33 https://gitlab.mpi-sws.org/
iris/lambda-rust

224

https://gitlab.mpi-sws.org/iris/lambda-rust
https://gitlab.mpi-sws.org/iris/lambda-rust

Chapter 14

Related work

We discuss related work in two broad categories: other substructural type
systems, and other work on Rust.

14.1 Substructural type systems for state

Over the past decades, various languages and type systems have been
developed that use linear types,1 ownership,2 and/or regions3 to guarantee
safety of heap-manipulating programs. These include Cyclone,4 Vault,5
and Alms.6 Much of this work has influenced the design of Rust, but a
detailed discussion of that influence is beyond the scope of this dissertation.

In a related but very different line of work, systems like Ynot,7 FCSL,8
and F∗9 integrate variants of separation logic into dependent type theory.
These systems are aimed at full functional verification of low-level imper-
ative code and thus require a significant amount of manual proof and/or
type annotations compared to Rust.

In the following, we focus on two key differences that set Rust and
our proof apart from prior substructural languages and their soundness
proofs: unsafe and &mut T.

• Most prior systems are closed-world, meaning that they are defined by
a fixed set of rules and are proven sound using syntactic techniques.10
As explained in §1.2, Rust’s use of unsafe code to extend the scope of
the type system fundamentally does not fit into this paradigm.

• Another unique feature of Rust are its mutable references (&’a mut T,
or &mut T for short): mutable references are unique pointers associated
with a lifetime (or region11 as they are typically called in the literature)
and they support reborrowing. Prior work typically permits all region
pointers to be duplicated. As we have seen in §8.5, with reborrowing
we can actually have multiple mutable references to the same target
in scope, but only one of them may be used at any given point in the
code.

Remarkably, while mutable references being unique is a core feature
of Rust today, this was actually not the case for much of the early
development of Rust (before the 1.0 release in 2015). The first steps
towards uniqueness of mutable references were made in the seminal blog
post “Imagine never hearing the phrase ‘aliasable, mutable’ again”.12 Only
about a year before the release of Rust 1.0, mutable references became
fully unique pointers by excluding read accesses through possible aliases.13

1 Wadler, “Linear types can change
the world!”, 1990 [Wad90].

2 Clarke, Potter, and Noble, “Own-
ership types for flexible alias protec-
tion”, 1998 [CPN98].

3 Fluet, Morrisett, and Ahmed,
“Linear regions are all you need”,
2006 [FMA06].

4 Jim et al., “Cyclone: A safe dialect
of C”, 2002 [Jim+02].

5 DeLine and Fähndrich, “Enforcing
high-level protocols in low-level
software”, 2001 [DF01].

6 Tov and Pucella, “Practical affine
types”, 2011 [TP11].

7 Nanevski et al., “Ynot: Dependent
types for imperative programs”,
2008 [Nan+08].

8 Nanevski et al., “Communicating
state transition systems for fine-
grained concurrent resources”, 2014
[Nan+14].

9 Swamy et al., “Dependent types
and multi-monadic effects in F*”,
2016 [Swa+16].

10 Wright and Felleisen, “A syntactic
approach to type soundness”, 1994
[WF94].

11 Fähndrich and DeLine, “Adoption
and focus: Practical linear types
for imperative programming”, 2002
[FD02].

12 Matsakis, “Imagine never hearing
the phrase ‘aliasable, mutable’
again”, 2012 [Mat12].

13 Matsakis, “Rust RFC: Stronger
guarantees for mutable borrows”,
2014 [Mat14].

225

Part II: RustBelt Chapter 14: Related work

The work by Fluet, Morrisett, and Ahmed14 on linear regions bears
many similarities to the lifetime logic, with region capabilities correspond-
ing to lifetime tokens and references corresponding to borrows. However,
their approach permits combining mutation with aliasing; there is nothing
like &mut T. This is not a problem because they consider neither interior
pointers (where writing to one pointer can invalidate an aliasing pointer)
nor concurrency. We believe that, to extend linear regions to handle
Rust’s unique borrows, one would end up needing something akin to our
lifetime logic.

Semantic substructural soundness proofs. We are only aware of a few
substructural type systems for which soundness has been proven seman-
tically (using logical relations). These include L3,15 λURAL,16 and the
“superficially substructural” type system of Krishnaswami et al.17 Ahmed
et al.’s motivations for doing semantic soundness proofs were somewhat
different from ours. One of their motivations was to build a foundation
for substructural extensions to the Foundational Proof-Carrying Code
project.18 Another was to make it possible to modularly extend soundness
proofs when building up the features of a language incrementally (although
it is worth noting that Balabonski et al.19 achieved similarly modular
proofs for Mezzo using only syntactic methods). In contrast, following
Krishnaswami et al., we are focused on building a soundness proof that is
“extensible” along a different axis, namely the ability to verify soundness
of libraries that extend Rust’s core type system through their use of unsafe
features. Lastly, all of the prior semantic soundness proofs were done
directly using set-theoretic step-indexed models, whereas in the present
work, in order to model the complexities of Rust’s lifetimes and borrowing,
we found it essential to work at the higher level of abstraction afforded
by Iris and our lifetime logic.

Gordon et al.20 describe a type system for safe parallelism, based on
qualifying references with attributes including isolated which describes
a unique pointer. Similar to Rust (and unlike most other approaches),
reference permissions apply transitively: when loading a reference through
a reference, both permissions get combined to obtain the permission
of the new reference (akin to S-deref-bor-own and S-deref-bor-
mut on page 128). The authors specifically avoid the use of regions to
make typechecking less dependent on lexical scopes.21 This keeps the
type system significantly simpler, and they can still support temporarily
weakening uniqueness through recovery rules. However, recovery is weaker
than reborrowing: accessing isolated fields requires destructive reads—
incidentally, a pattern which was also widely used in Rust before mutable
references were made unique. The soundness of their system is proven
semantically in the Views framework,22 but they do not explicitly discuss
anything like unsafe code.

Cyclone. Cyclone23 is a safe dialect of C, with a focus on maintaining
programmer control over memory management. It uses regions as models
of dynamic memory allocators (“arenas”), unlike in Rust where lifetimes
are an entirely fictional concept of the type system. While Cyclone

14 Fluet, Morrisett, and Ahmed,
“Linear regions are all you need”,
2006 [FMA06].

15 Ahmed, Fluet, and Morrisett,
“L3: A linear language with loca-
tions”, 2007 [AFM07].

16 Ahmed, Fluet, and Morrisett, “A
step-indexed model of substructural
state”, 2005 [AFM05].

17 Krishnaswami et al., “Superfi-
cially substructural types”, 2012
[Kri+12].

18 Appel, “Foundational proof-
carrying code”, 2001 [App01].

19 Balabonski, Pottier, and
Protzenko, “The design and for-
malization of Mezzo, a permission-
based programming language”, 2016
[BPP16].

20 Gordon et al., “Uniqueness and
reference immutability for safe
parallelism”, 2012 [Gor+12].

21 Indeed the first generation of
the Rust borrow checker regularly
required tweaking the scope of
a variable to please the lifetime
analysis. However, things have
gotten much better with non-lexical
lifetimes [Mat16b], where the
lifetime of a variable can end before
it goes out of scope.

22 Dinsdale-Young et al., “Views:
Compositional reasoning for concur-
rent programs”, 2013 [Din+13].

23 Grossman et al., “Region-based
memory management in Cyclone”,
2002 [Gro+02]; Swamy et al., “Safe
manual memory management in
Cyclone”, 2006 [Swa+06].

226

Part II: RustBelt Chapter 14: Related work

also supports “ghost” regions (called alias), their purpose is to permit
temporary aliasing of otherwise linear/unique pointers. Cyclone has no
equivalent to &mut T in Rust, which provides temporary (controlled by a
“ghost” region) exclusive access to T.

Cogent. Cogent24 is a purely functional, linearly typed language designed
to implement file systems and verify their functional correctness. Its
linear type system permits efficient compilation to machine code using
in-place updates, while the purely functional semantics enables equational
reasoning. Its design is such that missing functionality can be implemented
in C functions (much like unsafe code in Rust), which are given types
to enforce correct usage in the Cogent program. These C functions are
then manually verified to implement an equational specification and to
follow the guarantees of the type system. However, the language and the
type system are much simpler than Rust’s (e.g., there is no support for
recursion, iteration, borrowing, or mutable state).

Mezzo. Mezzo25 can be placed somewhere between the syntactic and
the semantic approach. It comes with a substructural type system whose
expressivity parallels that of a separation logic. Its soundness proof is
modular in the sense that the authors start by verifying a core type system,
and then add various extensions. This relies on an abstract notion of
resources called monotonic separation algebras.26 Nevertheless, Mezzo’s
handling of types remains entirely syntactic (e.g., based on the grammar of
types); there is no semantic account for types that would permit “adding”
new types without revisiting the proofs.

In comparison with Rust, while Mezzo’s type system decouples owner-
ship from data, granting much more flexibility than Rust does, there are
also some key patterns of Rust that are hard or impossible to represent
in Mezzo. The authors describe a design pattern they call “borrowing”
that is indeed serving a purpose very similar to Rust’s mutable reference
(&mut T). However, borrowing in Mezzo is encoded in the type system
and requires the programmer to wrangle with “magic wands” encoded
as closures. It is also unclear how to encode some more powerful uses of
borrowing that Rust provides (such as mutable iteration over a Vec, which
dynamically hands out mutable references to each element of the vector)
in Mezzo. And finally, sharing works very differently in the two languages:
in Mezzo, sharing requires irreversibly making the data immutable. In
contrast, sharing in Rust is done using shared references. This means
sharing is temporary, as controlled by the lifetime of that reference. This
is a huge win for ergonomics, as it means that all methods which work
on shared read-only data (such as Vec::len to determine the length of a
vector) can also be used on a mutable reference or a fully owned vector.

14.2 Rust verification

Patina27 is a formalization of the Rust type system, with accompanying
partial proofs of progress and preservation. Being syntactic, these proofs
do not scale to account for unsafe code. To keep our formalization

24 O’Connor et al., “Refinement
through restraint: Bringing down
the cost of verification”, 2016
[OCo+16]; Amani et al., “Cogent:
Verifying high-assurance file system
implementations”, 2016 [Ama+16].

25 Balabonski, Pottier, and
Protzenko, “The design and for-
malization of Mezzo, a permission-
based programming language”, 2016
[BPP16].

26 See §7.2 for a comparison to
resource algebras in Iris.

27 Reed, “Patina: A formalization of
the Rust programming language”,
2015 [Ree15].

227

Part II: RustBelt Chapter 14: Related work

feasible, we did not reuse the syntax and type system of Patina, but
rather designed λRust from scratch in a way that better fits Iris.

CRUST28 is a bounded model checker designed to verify the safety of
Rust libraries implemented using unsafe code. It checks that all clients
calling up to n library methods do not trigger memory-safety faults. This
provides an easy-to-use, automated way of checking unsafe code before
attempting a full formal proof.29 Their approach has successfully re-
discovered some soundness bugs that had already been fixed in Rust’s
standard library. However, by only considering one library at a time, it
cannot find bugs that arise from the interaction of multiple libraries.30

Lindner, Aparicius, and Lindgren31 use symbolic execution in KLEE to
automatically verify that safe libraries do not cause panics (an exception-
like mechanism that Rust uses to signal fatal unexpected error conditions).
Their tool can also detect precondition violations of some unsafe intrinsics,
such as unchecked division (where division by zero causes undefined
behavior), and thus help verify safe encapsulation of unsafe code.

An entirely separate line of work is concerned with exploiting Rust’s
strong type system to simplify formal verification of systems code. Prusti32
translates Rust functions with user-defined annotations into Viper,33 which
is used as the underlying verification engine. Crucially, the translation
exploits the ownership information encoded in the Rust type system so that
the user just has to specify the values behind mutable or shared references,
but does not need to be concerned with points-to facts. Ullrich34 shows
how to monadically embed a subset of safe Rust programs into the
purely functional language of the Lean theorem prover with the goal of
verifying functional correctness. RustHorn35 translates Rust programs to
constrained Horn clauses, also relying on the ownership system for this
translation. The authors propose a novel treatment of mutable references
in terms of prophecy variables,36 entirely unlike what we have done with
the lifetime logic in RustBelt. It will be interesting to explore a possible
relation between the two approaches.

28 Toman, Pernsteiner, and Torlak,
“CRUST: A bounded verifier for
Rust”, 2015 [TPT15].

29 However, their work contains a
flaw where they skip verification of
entirely safe methods: “Functions
without unsafe code are ignored
because their memory safety follows
from the memory safety of the
functions they call and the assumed
correctness of Rust’s memory safety
analyses.“ Even entirely safe meth-
ods can violate invariants relied
upon by other unsafe methods in
the same module, so skipping them
can lead to bugs being missed.

30 Ben-Yehuda,
“std::thread::JoinGuard (and
scoped) are unsound because of
reference cycles”, 2015 [Ben15].

31 Lindner, Aparicius, and Lindgren,
“No panic! Verification of Rust
programs by symbolic execution”,
2018 [LAL18].

32 Astrauskas et al., “Leveraging
Rust types for modular specification
and verification”, 2019 [Ast+19].

33 Müller, Schwerhoff, and Summers,
“Viper: A verification infrastructure
for permission-based reasoning”,
2016 [MSS16].

34 Ullrich, “Simple verification
of rust programs via functional
purification”, 2016 [Ull16].

35 Matsushita, Tsukada, and
Kobayashi, “RustHorn: CHC-based
verification for Rust programs”,
2020 [MTK20].

36 Abadi and Lamport, “The exis-
tence of refinement mappings”, 1991
[AL91].

228

Part III

Stacked Borrows

Part III: Stacked Borrows

Stacked Borrows is an aliasing model for Rust which enables compilers
to perform strong optimizations based solely on local (intraprocedural)
type information. For background, examples, and key challenges, see the
introduction in §1.3.

In the third and final part of this dissertation, we explain in detail how
Stacked Borrows works, and we present the results of our evaluation of
Stacked Borrows with Miri, where we check real Rust code for conformance
with the model. This part assumes some knowledge of Rust; all necessary
background is established in §8.

We begin in §15 by describing a basic version of Stacked Borrows for
mutable and shared references (but without interior mutability). In §16,
we show how to expand this model to support more advanced optimizations
and interior mutability. We finish the description of the model in §17 by
giving a formal definition. In §18, we report on our evaluation of Stacked
Borrows, and in §19 we discuss related work.

232

Chapter 15

Uniqueness and immutability

To briefly recall what we discussed in §1.3, the goal of Stacked Borrows is
to enable the Rust compiler to exploit the strong alias information that is
encoded in the Rust type system: depending on the type of a reference, it
either guarantees that no aliases to this reference exist (for &mut T), or
that all aliases that could exist are read-only (for &T). This information
is useful not only to ensure memory and thread safety, but also to inform
the optimizer and support static analysis of Rust code. The problem is
that unsafe code can, in principle, violate these guarantees—and due
to the importance of unsafe code in the Rust ecosystem, it is crucial
for optimizations to be correct even in the presence of unsafe code. To
enable sound type-based alias analysis of all Rust code, we propose a set
of rules that restrict aliasing in unsafe code: Stacked Borrows. Proof
sketches establish that these rules are sufficient to enable interesting
optimizations.1 At the same time the rules are compatible with real-world
unsafe Rust code, which is demonstrated by running that code in an
interpreter equipped with an implementation of Stacked Borrows (we will
get to this in §18).

The key idea of Stacked Borrows is to take the static analysis that
the borrow checker performs, which uses lifetimes (§8.5), and develop
from it a dynamic analysis that does not use lifetimes. Then we can
require that even programs using unsafe code must satisfy this dynamic
analysis, which gives the compiler license to assume that as a fact during
optimization. Safe programs should trivially satisfy the dynamic analysis,
because it is meant to be strictly more liberal than the borrow checker.

Avoiding the use of lifetimes in Stacked Borrows was a deliberate choice.
Lifetimes are in many cases inferred by the compiler, even in unsafe code,
and whether that code is considered well-behaved should not depend on
the mercurial details of the compiler’s lifetime inference. In particular,
this inference has recently undergone significant change—with the switch
from the old AST-based borrow checker to non-lexical lifetimes (“NLL”)2—
and it is planned to change again as part of an ongoing project called
“Polonius”.3 Such changes should not affect the way people have to think
about their unsafe code. Moreover, lifetimes are erased from the program
during the Rust compilation process immediately after borrow checking
is done, so the optimizer does not even have access to that information.
Thus practically speaking, making Stacked Borrows depend on lifetimes
would not be useful for analyses performed by the compiler.

1 Like all formal results presented
in this dissertation, these proof
sketches have been formalized in
Coq.

2 Klock, “Breaking news: Non-
lexical lifetimes arrives for every-
one”, 2019 [Klo19].

3 Matsakis, “An alias-based formu-
lation of the borrow checker”, 2018
[Mat18].

233

Part III: Stacked Borrows Chapter 15: Uniqueness and immutability

We will build up the Stacked Borrows semantics incrementally, begin-
ning in §15.1 with the simplest possible version: suppose Rust had neither
shared references nor raw pointers,4 only mutable references. We discuss
the operational semantics of such a restricted form of Stacked Borrows in
§15.2. In §15.3, we will add raw pointers to show how our operational
semantics rules out misbehaving uses of raw pointers—as we demonstrate
in §15.4, where we establish the correctness of the example optimization
from the introduction (§1.3). Finally, we extend the model to also handle
shared references (§15.5), and we present an optimization enabled by
this (§15.6).

15.1 Mutable references in a stack

In this simplified language with only mutable references, what does a
dynamic version of the borrow checker look like? To reiterate, the borrow
checker ensures
1. that a reference and all references derived from it can only be used

during its lifetime, and
2. that the original referent is not used until the lifetime of the loan has

expired.
We can re-phrase this property without referring to lifetimes, by saying
that every use of the reference (and everything derived from it) must
precede the next use of the original referent. For reasons that will become
clear shortly, we call this the stack principle. This is equivalent to what
the borrow checker does, if we think of the lifetime as ending some time
between the last use of the reference and the next use of the referent.

So, let us consider the following example:

1 let mut local = 0;
2 let x = &mut local;
3 let y = &mut *x; // Reborrow x to y.
4 *x = 1; // Use x again.
5 *y = 2; // Error! y used after x got used.

This program violates the stack principle because a use of the reference y
occurs in line 5 after the next use of referent x in line 4 (“next” after y
has been created). It hence gets rejected by the borrow checker.5

If we look at the usage patterns of variables here, we can see that
we start by creating x, then we create y, then we use x again—and
thereafter, we use y again, which is the point where the code violates the
stack principle. This demonstrates that the stack principle enforces a
well-nested usage of references: the use of the derived reference y must
be “nested between” other uses of x and cannot be arbitrarily interleaved.
The “XYXY” sequence of usages violates this idea of nesting. As always
when things are well-nested, that indicates a stack discipline, and indeed
we will think of these aliasing references as being organized on a stack.

At a high level, the way Stacked Borrows rejects this program is by
tracking a stack of references that are allowed to access local. The stack
tracks which borrows of local may still be used, so we also call it the
borrow stack to disambiguate it from, e.g., the call stack. Newly created
references are pushed on the top of the borrow stack, and we enforce that

4 As explained at the end of §8.5,
raw pointers are unchecked pointers
that can only be used in unsafe
code.

5 For simple integer types rejecting
this program might seem silly, but
the analysis is supposed to work
for all types, and in §8 we have
seen how programs can go wrong
if we use more complex types such
as Vec<i32> where a mutation can
invalidate existing pointers.

234

Part III: Stacked Borrows Chapter 15: Uniqueness and immutability

t ∈ Tag := N Scalar := Pointer(`, t) | z where z ∈ Z
Item := Unique(t) | . . . Mem := Loc fin−⇀ Scalar× Stack
Stack := List(Item)

Figure 15.1: Stacked Borrows
domains (preliminary).after a reference gets used, it is again at the top of the stack. To this

end, all references above it are popped, which permanently invalidates
them—references not in the stack may not be used at all. So, line 3 pushes
y on top of x in that stack, but line 4 removes y again because we used x.
Thus, in line 5, y is no longer in the stack, and hence its use is found to
be a violation of the stack principle, and therefore undefined behavior.

15.2 An operational model of the borrow checker

To make this idea more precise, we first have to be able to distinguish
different references that point to the same memory. x and y in the
previous example program point to the same location, but to explain what
is going on we have to tell them apart in our semantics. So we assume
that every reference is tagged by some unique “pointer ID” t that gets
picked when a reference is created, and is preserved as the reference is
copied around. Formally (see Figure 15.1), we say that a pointer value
Pointer(`, t) consists of a location ` in memory that the pointer points to,
and a tag t identifying the pointer/reference. Both references and raw
pointers are represented as pointer values at run-time.

In memory, we then store for every location ` a borrow stack of tags
identifying the references that are allowed to access this location. To
prepare for future extensions of the model in the following sections, we
call the elements of the stack items; so far, Unique(t) holding a tag t is
the only kind of item. Of course we also store the value that the memory
holds at this location; in our case, such primitive values (integers and
pointers) are called scalars.

The operational semantics acts on the tags and borrow stacks as follows:

Rule (new-mutable-ref). Any time a new mutable reference is cre-
ated (via &mut expr) from some existing pointer value Pointer(`, t) (the
referent), first of all this is considered a use of that pointer value (so we
follow use-1 below). Then we pick some fresh tag t′. The new reference
has value Pointer(`, t′), and we push Unique(t′) on top of the stack for `.

Rule (use-1). Any time a pointer value Pointer(`, t) is used, an item with
tag t must be in the stack for `. If there are other tags above it, we pop
them, so that the item with tag t is on top of the stack afterwards.6 If
Unique(t) is not in the stack at all, this program has undefined behavior.

These rules reflect the stack principle: a newly created reference may
only be used as long as its item is in the stack, which is until the next
time the referent it got created from is used.

We can see these rules in action in the following annotated version
of the previous example, where we spell out which reference has which

6 Later it will be possible for a tag
to occur multiple times in the stack;
in that case we use the topmost
item, i.e., we pop as few other items
as possible.

235

Part III: Stacked Borrows Chapter 15: Uniqueness and immutability

pointer value at run-time, and how the borrow stack of the memory
storing local evolves over time. (Borrow stacks are shown bottom-to-top,
i.e., the left end is the bottom of the stack.) We assume that local is
allocated at address `, and h ∈ Mem refers to the current memory at the
given program point. Direct accesses to a local variable also use a tag; we
assume that tag is 0 here.

1 let mut local = 42; // Stored at location `, and with tag 0.
2 // The initial stack: h(`) = (42, [Unique(0)])
3 let x = &mut local; // = Pointer(`, 1)
4 // Use local, push tag of x (1) on the stack: h(`) = (42, [Unique(0),Unique(1)]). (new-mutable-ref)
5 let y = &mut *x; // = Pointer(`, 2)
6 // Use x, push tag of y (2): h(`) = (42, [Unique(0),Unique(1),Unique(2)]). (new-mutable-ref)
7 *x += 1;
8 // Pop tag of y (2) to bring tag of x (1) to the top: h(`) = (43, [Unique(0),Unique(1)]). (use-1)
9 *y = 2;

10 // Undefined behavior! Stack principle violated: tag of y (2) is not in the stack. (use-1)

15.3 Accounting for raw pointers

We are almost ready to come back to the example from the introduc-
tion (§1.3):

1 fn example1(x: &mut i32, y: &mut i32) -> i32 {
2 *x = 42;
3 *y = 13;
4 return *x; // Has to read 42, because x and y cannot alias!
5 }
6
7 fn main() {
8 let mut local = 5;
9 let raw_pointer = &mut local as *mut i32;
10 let result = unsafe {
11 example1(&mut *raw_pointer, &mut *raw_pointer)
12 };
13 println!("{}", result); // Prints "13".
14 }

Remember, our goal is to explain how and where that program violates the
“dynamic borrow checker” that is Stacked Borrows. We need this program
to be a violation of Stacked Borrows, because it would otherwise constitute
a counterexample to the desired optimization of making example1 always
return 42.

So far, however, our model only deals with mutable references. We
have to explain what happens when raw pointers are created via a cast
(expr as *mut T). Just like the borrow checker does not do any tracking
for raw pointers, Stacked Borrows also makes no attempt to distinguish
different raw pointers pointing to the same thing: raw pointers are un-
tagged. So we extend our set Tag of tags with a ⊥ value to represent
untagged pointers.

Raw pointers are added to the borrow stack in the same way as mutable
references. The idea is that an “XYXY” is allowed when both “X” and
“Y” are raw pointers, but if either one of them is a mutable reference,
we want that to still be a violation of the stack principle. This way,

236

Part III: Stacked Borrows Chapter 15: Uniqueness and immutability

when performing analyses for compiler optimizations, we can be sure
that mutable references are never part of an “XYXY” pattern of memory
accesses.

To track raw pointers in the borrow stack, we add a second kind of
items that can live in the stack: SharedRW (short for “shared read-write”)
items indicate that the location has been “shared” and is accessible to all
raw (untagged) pointers for reading and writing. Overall, we now have:

t ∈ Tag := N ∪ {⊥} Item := Unique(t) | SharedRW | . . .

We amend the operational semantics as follows, where use-2 replaces
use-1:7

Rule (new-mutable-raw-1). Any time a mutable raw pointer is created
by casting (expr as *mut T) a mutable reference (expr: &mut T) with
value Pointer(`, t), first of all this is considered a use of that mutable
reference (see use-2). Then the new raw pointer has value Pointer(`,⊥),
and we push SharedRW on top of the borrow stack for `.

Rule (use-2). Any time a pointer value Pointer(`, t) is used, if t is ⊥
then SharedRW must be in the stack for `; otherwise Unique(t) must be
in the stack. If there are other tags above that item, we pop them. In
case of ambiguity (when there are several items in the stack that match
t), use the topmost item, i.e., pop as few items as possible. If the desired
item is not in the stack at all, we found a violation of the stack principle.

Note how for tagged pointer values (i.e., mutable references), use-2 is
the same as use-1.

With this, the example program from the introduction executes as
follows (we reordered the functions so that this can be read top-to-bottom):

1 fn main() {
2 let mut local = 5; // Stored at location `, and with tag 0, h(`) = (5, [Unique(0)]).
3 let raw_pointer = &mut local as *mut i32; // = Pointer(`,⊥)
4 // The temporary reference gets tag 1, and is pushed: h(`) = (5, [Unique(0),Unique(1)]).
5 // Then the raw pointer is pushed: h(`) = (5, [Unique(0),Unique(1),SharedRW]).
6 // (new-mutable-ref, new-mutable-raw-1)
7 let result = unsafe { example1(
8 &mut *raw_pointer, // = Pointer(`, 2)
9 // Reference is pushed on top of the raw pointer: h(`) = (5, [. . . ,SharedRW,Unique(2)]).
10 // This uses the raw pointer! (new-mutable-ref)
11 &mut *raw_pointer // = Pointer(`, 3)
12 // Using raw_pointer here pops the first reference off the stack: h(`) = (5, [. . . ,SharedRW,Unique(3)]).
13 // This uses the raw pointer! (new-mutable-ref)
14) }; // Next: jump to example1 (line 17).
15 println!("{}", result); // Prints "13".
16 }
17 fn example1(x: &mut i32, y: &mut i32) -> i32 {
18 // x = Pointer(`, 2), y = Pointer(`, 3), h(`) = (5, [Unique(0),Unique(1), SharedRW,Unique(3)])
19 *x = 42;
20 // Analysis error! Tag of x (which is 2) is not in the stack. Program has undefined behavior.
21 *y = 13;
22 return *x; // We want to optimize this to return 42.
23 }

7 For now, SharedRW behaves the
same as Unique(⊥); this will change
later when we add support for
shared references.

237

Part III: Stacked Borrows Chapter 15: Uniqueness and immutability

The key point in this execution is when the two references that get passed
to example1 are created: each time we execute &mut *raw_pointer,
new-mutable-ref says this is using raw_pointer and as such we make
sure that SharedRW is at the top of the borrow stack (use-2). When
creating the second reference (later called y), we have to pop off Unique(2),
rendering the first reference (x) unusable! When x does get used in line 19,
this is detected as a violation of the stack principle.

It may seem strange that a reborrow of a reference (as opposed to
actually accessing memory) counts as a “use” of the old reference (the
operand of the reborrow), but that is important: if we did not do so,
after the second &mut *raw_pointer, we would end up with the following
stack for `:

[Unique(0),Unique(1),SharedRW,Unique(2),Unique(3)]

This borrow stack encodes that the reference tagged 3 is somehow “nested
within” the reference tagged 2, and 3 may only be used until 2 is used the
next time—which are the rules we want when 3 is reborrowed from 2, but
that was not the case! To make sure that the stack adequately reflects
which pointer values were created from which other pointer values, we make
merely creating a reference “count” as a write access of the old reference
(the operand). Thus, the stack will instead be [. . . ,SharedRW,Unique(3)],
which encodes the fact that 3 was created from a raw pointer and not
from 2. In future work, we would like to explore other models that track
the precise pointer inheritance information in a tree, instead of a stack.

15.4 Retagging, and a proof sketch for the optimization on
mutable references

The next step in developing Stacked Borrows would be to try and convince
ourselves that we have not just ruled out one counterexample for the
desired optimization in example1, but all possible counterexamples. How-
ever, it turns out that this would be a doomed enterprise: the semantics
is not yet quite right!

In particular, if example1 is called with two pointer values carrying the
same tag, then the dynamic analysis as described so far does not have any
problem with both of them aliasing. When x and y have the same tag,
the function behaves as if all three accesses were done using x, and there
is no Stacked Borrows violation. Such duplicate tags are possible because
unsafe code can make copies of any data,8 including mutable references.

The problem is that, when we analyze example1 in an unknown context,
the tags of x and y are provided by the caller and thus untrusted. To
be able to reason based on tags and borrow stacks, we need to be sure
that both references have unique tags that are not used by any other
pointer value in the program.9 This is achieved by inserting retagging
instructions. retag is an administrative instruction that makes sure that
references have a fresh tag. It is automatically inserted by the compiler—
in particular, all arguments of reference type are retagged immediately
when the function starts executing:

8 This can be achieved, for example,
using transmute_copy, or by reading
with a raw pointer.

9 Unsafe code can duplicate tags but
it cannot forge them—there is no
language operation for that.

238

Part III: Stacked Borrows Chapter 15: Uniqueness and immutability

1 fn example1(x: &mut i32, y: &mut i32) -> i32 {
2 retag x; // equivalent to: ‘x = &mut *x;‘
3 retag y; // equivalent to: ‘y = &mut *y;‘
4 *x = 42;
5 *y = 13;
6 return *x; // We want to optimize this to return 42.
7 }

As indicated in the comments, retagging achieves the desired effect by
basically performing a reborrow. In the fragment of Rust we have consid-
ered so far, retag x behaves exactly like x = &mut *x, which means x
still points to the same location, but we follow the usual Stacked Borrows
steps for both using (the old value of) x and creating a new reference
(use-2, new-mutable-ref).

Now we are finally ready to give a proof sketch for why performing the
desired optimization in line 6 of this program is correct. If the program
does not conform to the Stacked Borrows discipline, then there is nothing
to show because the program is considered to have undefined behavior.
So we proceed under the assumption that the program does conform to
Stacked Borrows:

1. Let us say that after the retag in line 2, x has value Pointer(`, t). We
know that no other pointer value has tag t, and that this tag is at the
top of `’s borrow stack.

2. x is not used until line 4, so if any code in between has any effect on
the value or the stack of `, it will do that through a pointer value with
a different tag. That tag must be below t in the stack, because we
established in (1) that t is at the top. This means that using a pointer
value with a different tag will pop t off the stack. However, for line 4 to
pass the analysis, t must still be in the stack. Thus, ` could not have
been accessed in between line 2 and line 4, and t must still be at the
top of `’s stack. After executing line 4, the stack remains unchanged;
but we now know that the value stored at ` is 42.

3. Finally, in line 6, we can repeat the same argument again to show
that if t is still in `’s stack, no access to ` could have occurred in the
meantime. Hence, we can conclude that ` still contains value 42, and
we can perform the desired optimization.

What is interesting about this argument is that we never argued
explicitly about whether x and y are aliasing or not! As a result, this
particular optimization can be generalized to an entire optimization
pattern, where the access of y is replaced by any code that does not
mention x:
1 fn example1(x: &mut i32, /* more arguments */) -> i32 {
2 retag x;
3 /* replace this line with any code not using x */
4 *x = 42;
5 /* replace this line with any code not using x */
6 return *x; // We want to optimize this to return 42.
7 }

This pattern demonstrates that x truly is a “unique pointer”: code not
using x cannot possibly have an effect on the memory x points to.

239

Part III: Stacked Borrows Chapter 15: Uniqueness and immutability

In particular, the optimization also applies when the code not using
x is a call to an unknown function. That is, Stacked Borrows allows us
to do something that is unthinkable in the typical C/C++ compiler: we
have a reference, x, that was passed in by the environment,10 and still,
we can call a foreign function f(), and as long as we do not pass x as an
argument to f, we can assume that f neither reads from nor writes to x.
Furthermore, we can make this assumption without doing any inlining,
using only intraprocedural reasoning—a “holy grail” of alias analysis.

When to retag? The retag in the previous example was crucial because
it allowed the compiler to assume that x actually had a unique tag. This
optimization, as well as all of the ones we are going to see, can only be
performed on references that have been retagged “locally” (within the
function under analysis), because only then we can make the necessary
assumptions about the tag of the reference and the borrow stack of the
location it points to. So where exactly retag is inserted becomes an
important knob in Stacked Borrows that determines for which references
optimizations like the one above can be performed.

For this version of Stacked Borrows, we perform retagging any time a
reference is passed in as an argument, returned from a function, or read
from a pointer. Basically, any time a reference “enters” our scope, it is
retagged:

1 fn retag_demo(x: &mut i32, y: &&i32) {
2 retag x; // All function arguments of reference type...
3 retag y; // ...are retagged.
4 let z = *y;
5 retag z; // We also retag references read from a pointer...
6 let incoming_ref = some_function_returning_a_ref();
7 retag incoming_ref; // ...and references returned to us.
8 }

Reordering instructions. To catalog the various transformations that
Stacked Borrows enables, it will be helpful to phrase them as reordering
certain instructions. For example, the optimization we just considered
is equivalent to reordering a load from a mutable reference up across
the unknown code (which we represent here as a call to some externally
defined functions f and g):

1 retag x;
2 g();
3 *x = 42;
4 f();
5 let retval = *x;
6 return retval;

⇒

1 retag x;
2 g();
3 *x = 42;
4 let retval = *x;
5 f();
6 return retval;

The only difference between the left-hand side and the right-hand side
is that we swapped lines 4 and 5. It is now easy to argue that the load in
line 4 immediately follows a store of 42 to the same location, so retval
will necessarily be 42.11

10 This is relevant because it means
the pointer value is “escaped” in
the sense that it is known to the
environment, and unknown code
could in principle (but not with
Stacked Borrows) read from or even
write to it.

11 In a concurrent language (which
our demo language is not, but
Rust is), this assumes that there is
no data race. But data races are
undefined behavior in Rust, so this
assumption is justified.

240

Part III: Stacked Borrows Chapter 15: Uniqueness and immutability

15.5 Shared references

So far, we have only considered mutable references and raw pointers.
We have seen that Stacked Borrows enforces a form of uniqueness for
mutable references, enough to justify reordering a memory access around
unknown code. Next, we are going to look at shared references. The goal
is to enforce that they are read-only, so that we can reorder loads from
shared references around unknown code even if that code has access to
the reference (which, remember, the unknown code in the case of mutable
references crucially does not have).

Just as we did for mutable references, we arrive at the stack principle for
shared references by rephrasing what the borrow checker enforces about
them in a way that avoids mentioning lifetimes: every use of the reference
(and everything derived from it) must occur before the next mutating use
of the referent (after the reference got created), and moreover the reference
must not be used for mutation.

To see how this plays out, let us again consider a simple example
involving references to integers:
1 let mut local = 42;
2 let x = &mut local;
3 let shared1 = &*x; // Derive two shared references...
4 let shared2 = &*x; // ...from the same mutable reference, x.
5 let val = *x; // Use all *three* references...
6 let val = *shared1; // ...interchangeably...
7 let val = *shared2; // ...for read accesses.
8 *x += 17; // Use x again for a write access.
9 let val = *shared1; // Error! shared1 used after mutating x.

Despite the fact that x, shared1 and shared2 alias, this program is fine
until line 8—but in line 9, the stack principle for shared references is
violated: a use of the reference shared1 in line 9 occurs after a mutating
use of the referent in line 8.

To model this in Stacked Borrows, we introduce another kind of item
that can exist in the borrow stack:

Item := Unique(t) | SharedRO(t) | SharedRW(t) | . . .

The new item SharedRO(t) (“shared read-only”) indicates that references
tagged with t are allowed to read from but not write to the location
associated with this stack. We also equip SharedRW with a tag. This
means we can now speak about the “tag of an item”, which will be useful
in read-1. In new-mutable-raw-1, we just push SharedRW(⊥) instead
of SharedRW.12 That will make the rules for pointer uses easier to state.

We amend the existing Stacked Borrows rules as follows:

Rule (new-shared-ref-1). Any time a new shared reference is created
(&expr) from some existing pointer value Pointer(`, t), first of all this
is considered a read access to that pointer value (so we follow read-1
below). Then we pick some fresh tag t′, use Pointer(`, t′) as the value for
the shared reference, and add SharedRO(t′) to the top of the stack for `.

Rule (read-1). Any time a pointer with value Pointer(`, t) is read from,
an item with tag t (i.e., Unique(t), SharedRO(t) or SharedRW(t)) must

12 For now, all SharedRW items will
have tag ⊥, but that will change
in §16.4.

241

Part III: Stacked Borrows Chapter 15: Uniqueness and immutability

exist in the stack for `. Pop items off the stack until all the items above
the item with tag t are SharedRO(_). If no such item exists in the stack,
the program violates the stack principle. (This rule trumps the existing
use-2, which only gets used for writes now.)

Notice that we leave the rules for writing unchanged, which means that
even if SharedRO(t) is in the stack, a reference tagged t cannot be used
to write, as that requires a Unique(t) or SharedRW(t). This is the sense
in which SharedRO is read-only.

The key point in read-1 (and the key difference from use-2) is that
after reading with Pointer(`, t), we do not necessarily end up with an item
with tag t being on top of the stack! There may be some SharedRO above
it. This reflects the fact that two shared references can be used for reading
without “disturbing” each other; they do not pop the other reference’s
item off the stack. In contrast, write accesses (which are still governed
by use-2) require that the item with the tag of the pointer used for the
access becomes the top item on the stack.

Consequently, a key invariant that this system maintains is that if
there are any SharedRO’s in the stack, they are all adjacent at the top.
Notice how all operations that would push another kind of item (creating
a mutable reference or a raw pointer) count as a write access, so they
would first make some Unique(_) or SharedRW(_) the top of the stack
by popping off all SharedRO’s above them. Never is a Unique(_) or
SharedRW(_) pushed on top of a SharedRO(_).

With these rules, the example program executes as follows:

1 let mut local = 42; // Stored at location `, with tag 0.
2 let x = &mut local; // = Pointer(`, 1)
3 // Push tag of x on the stack: h(`) = (42, [Unique(0),Unique(1)]). (new-mutable-ref)
4 let shared1 = &*x; // = Pointer(`, 2)
5 let shared2 = &*x; // = Pointer(`, 3)
6 // New tags are pushed: h(`) = (42, [Unique(0),Unique(1), SharedRO(2), SharedRO(3)]). (new-shared-ref-1)
7 let val = *x;
8 // Check: Unique(1) in the stack, all items above are SharedRO(_). (read-1)
9 let val = *shared1;

10 // Check: SharedRO(2) in the stack, all items above are SharedRO(_). (read-1)
11 let val = *shared2;
12 // Check: SharedRO(3) in the stack, all items above are SharedRO(_). (read-1)
13 *x += 17;
14 // Pop until Unique(1) is at the top: h(`) = (59, [Unique(0),Unique(1)]). (use-2)
15 let val = *shared1;
16 // Analysis error! The tag of shared1 is not in the stack. (read-1)

Observe how the rule for reading references allows x, shared1, and
shared2 to happily coexist (even the “XYXY” pattern is allowed), but
the moment we write to x, the SharedRO(_) items are removed from the
stack and the corresponding shared references may no longer be used.

15.6 An optimization exploiting read-only shared references

To see how Stacked Borrows’ treatment of shared references is helpful, let
us consider a function that could benefit from an optimization exploiting
that shared references are read-only:

242

Part III: Stacked Borrows Chapter 15: Uniqueness and immutability

1 fn example2(x: &i32, f: impl FnOnce(&i32)) -> i32 {
2 retag x;
3 let val = *x / 3;
4 f(x);
5 return *x / 3; // We want to optimize this to return val.
6 }

We use a closure f to reflect the idea that arbitrary code can run in
between line 3, where we read x for the first time, and line 5, where we
want to optimize away the recomputation of *x / 3. Unlike in the case
of mutable references, we even give that unknown code access to our
reference x! It is a read-only reference, though, so f should not be able to
write through it.

Again we can craft a counterexample that prohibits this optimization
under a naive semantics:
1 fn main() {
2 let mut local = 6;
3 let x = &local;
4 let result = example2(x, |inner_x| {
5 retag inner_x;
6 let raw_pointer: *mut i32 =
7 unsafe { mem::transmute(inner_x) };
8 unsafe { *raw_pointer = 15; }
9 });
10 println!("{}", result); // Prints "5" (aka 15/3).
11 }

The interesting part is in lines 7 and 8, which are the body of the closure
f that we pass to example2. There, we circumvent the restriction that
one cannot write to a shared reference by calling transmute, which is
Rust’s unchecked cast operation. This lets us turn the (read-only) shared
reference into a (writable) raw pointer—and then we write to it.

However, under Stacked Borrows, this program has undefined behavior
(as we would hope). The transmute affects neither the tag t of the pointer
nor the borrow stack. Thus, in line 8, when we follow use-2, we fail to
find a Unique(t) or SharedRW(t) on the borrow stack. The only item with
tag t is the SharedRO(t) that was added by the retag in line 5.13

In more detail, here is the step-by-step execution of our counterexample
for the optimization of example2 (the closure makes the control flow a
bit more complicated—the numbers in [brackets] indicate the order of
execution):
1 fn main() {
2 let mut local = 6; // Stored at location `, with tag 0.
3 let x = &local; // = Pointer(`, 1)
4 // [0] h(`) = (6, [Unique(0), SharedRO(1)]) (new-shared-ref-1)
5 // Next: jump to example2 (line 17).
6 let result = example2(x, |inner_x| {
7 retag inner_x;
8 // [3] inner_x = Pointer(`, 3), h(`) = (6, [. . . ,SharedRO(1), SharedRO(2), SharedRO(3)])
9 let raw_pointer: *mut i32 = unsafe { mem::transmute(inner_x) };

10 // [4] raw_pointer = Pointer(`, 3), h(`) = (6, [. . . ,SharedRO(1), SharedRO(2), SharedRO(3)])
11 unsafe { *raw_pointer = 15; }
12 // [5] Analysis error! No Unique(3) in the stack for write access. (use-2)
13 });

13 The counterexample would
behave the same without the retag.
We added the retag for consistency,
but the soundness proof does not
expect unknown code to properly
use retag.

243

Part III: Stacked Borrows Chapter 15: Uniqueness and immutability

14 println!("{}", result); // Prints "5" (aka 15/3).
15 }
16
17 fn example2(x: &i32, f: impl FnOnce(&i32)) -> i32 {
18 retag x;
19 // [1] x = Pointer(`, 2), h(`) = (6, [Unique(0), SharedRO(1), SharedRO(2)])
20 let val = *x / 3;
21 // [2] Check: SharedRO(2) is in the stack, all items above are SharedRO(_). (read-1)
22 f(x); // Next: jump to closure body (line 6).
23 return *x / 3; // We want to optimize this to return val.
24 }

15.7 A proof sketch for the optimization on shared references

We have ruled out one particular counterexample to the desired optimiza-
tion, but what we really need to do is to argue that the optimization is
correct in any possible context. Here is the relevant code again:
1 fn example2(x: &i32, f: impl FnOnce(&i32)) -> i32 {
2 retag x;
3 let val = *x / 3;
4 f(x);
5 return *x / 3; // We want to optimize this to return val.
6 }

The argument now goes as follows:

1. Assume that after the retag in line 2, x has value Pointer(`, t). We
know that SharedRO(t) is at the top of the borrow stack for `.14 Let
us call the current scalar value stored in that location s. The goal is to
show that in line 5, ` still stores the value s.

2. While f executes, we know that any write access will pop off all
SharedRO’s from the stack. This relies on the invariant that all
SharedRO’s in the stack are sitting on top. So we conclude that as long
as SharedRO(t) is in the stack, the value stored at ` remains s.

3. Finally, in line 5, we may assume that SharedRO(t) is still in the stack,
because otherwise the program would violate Stacked Borrows (there
exists no other item with that tag). As a consequence, ` still stores s,
which justifies the optimization.

Reordering. We can write the above optimization as a reordering as
follows:
1 retag x;
2 let val = *x / 3;
3 f();
4 let retval = *x / 3;
5 return retval;

⇒

1 retag x;
2 let val = *x / 3;
3 let retval = *x / 3;
4 f();
5 return retval;

The only change is that we swapped lines 3 and 4, i.e., we moved a
load from a shared reference up across some unknown code with access to
that variable. Now it is easy to justify that doing *x / 3 twice in a row
will produce the same result.15

This is another example of a transformation that a C/C++ compiler
cannot even hope to perform.

14 Without the retag, the borrow
stack could contain SharedRW(t) or
Unique(t) instead of SharedRO(t),
and the proof would not go through.

15 Again this relies on there being
no data races in a well-defined Rust
program.

244

Chapter 16

Protectors and interior mutability

So far, we have seen two optimizations that exploit the assumption
that even unsafe code has to conform to Stacked Borrows, a dynamic
analysis that mirrors the static analysis performed by the Rust borrow
checker. In this chapter, we will extend Stacked Borrows on two axes: in
§16.1–§16.3 we will show how to support transformations that reorder
instructions down across unknown code (giving the compiler more freedom
in its optimizations), and in §16.4 we will show how to support interior
mutability (§8.6) in Stacked Borrows.

16.1 Reordering memory accesses down instead of up

Both of the optimizations we discussed so far followed a similar pattern:
some reference got retagged (step (1) in the proof sketches), then we made
some change / observation (we wrote to the mutable reference / read the
shared reference), then some unknown code got executed (2), and finally
we used our original reference again (3). The retag makes our reference
the “topmost” one in the stack, and the final use asserts that it is still
there. This works well for reordering instructions up across unknown
code.

However, in some cases it is also interesting to be able to move a
memory access down across unknown code.1 For example, consider the
following function:

1 // Moving a read down across f().
2 fn example2_down(x: &i32, f: impl FnOnce(&i32)) -> i32 {
3 retag x;
4 let val = *x;
5 f(x);
6 return val; // Can return *x instead.
7 }

We might want to move the read of x down from line 4 to line 6, across
the call to f. In the context of some more complex code, this could reduce
register pressure because we do not need to remember val around the
call to f.

For mutable references, we can similarly move reads down across code
that does not need them, but the more interesting case is moving a write
access down:

1 This is harder, because it extends
the liveness range of a reference.

245

Part III: Stacked Borrows Chapter 16: Protectors and interior mutability

1 // Moving a write down across f().
2 fn example3_down(x: &mut i32, f: impl FnOnce()) {
3 retag x;
4 *x = 42; // This write is redundant.
5 f();
6 *x = 13;
7 }

Removing the redundant write to x here boils down to moving it down
from line 4 to line 6. Then we end up with two adjacent writes to the
same reference, and the first one can be removed. However, this means
that unlike in the optimizations we considered so far—in fact, unlike in
the vast majority of optimizations that are typically performed—f will
be called with a different value stored in x than in the original program!
We will see in §16.3 how this can work.

16.2 Protectors

It turns out that Stacked Borrows as we have presented it so far does
not permit these optimizations that move operations down. Here is a
counterexample for example2_down:

1 fn main() {
2 let mut local = 42; // Stored at location `, with tag 0.
3 let raw_pointer = &mut local as *mut i32;
4 let val = example2_down(
5 unsafe { &*raw_pointer }, // = Pointer(`, 2)
6 |x_inner| unsafe {
7 retag x_inner; *raw_pointer = 17; // Changes *x.
8 },
9);

10 println!("{}", val); // Prints 42.
11 }

The closure that we pass as f changes the value stored in x by writing
to raw_pointer, an alias of x. This is allowed by Stacked Borrows.
Immediately before the write, the borrow stack for ` looks as follows:

[Unique(0),Unique(1),SharedRW(⊥),SharedRO(2),SharedRO(3)]

Here, 1 is the tag of the temporary mutable reference created in line 3, 2
is the tag of the shared reference created in line 5, and 3 is the tag
of x inside example2_down (retagging assigns a new tag there). In
this situation, we are allowed to perform a write with a raw pointer
thanks to the SharedRW(⊥) in the stack, and the resulting stack is
[Unique(0),Unique(1),SharedRW(⊥)]. This removes the tag of x from
the stack, but since x does not get used again, that is not a violation of
the rules we have set so far.2

However, in Rust, a reference passed to a function must outlive the
function call—i.e., its lifetime must last at least for the duration of the
call. Intuitively, since the lifetime of a reference relates to how long the
item for that reference’s tag is in the stack, the problem in the above
counterexample is that the lifetime of x ends while example2_down is
still running, when SharedRO(3) gets popped off the stack. To enable

2 This is why extending the liveness
range of a reference is hard: when
a reference is used somewhere, that
lets the compiler make certain
assumptions. When adding a
new use, there are no use-based
assumptions the compiler can make.

246

Part III: Stacked Borrows Chapter 16: Protectors and interior mutability

the desired optimization, we thus want to treat the counterexample as
incurring undefined behavior, by reflecting Rust’s “outlives” rule into
Stacked Borrows: SharedRO(3) must not be popped until the execution
of example2_down is finished.

To prevent SharedRO(3) from being popped off while example2_down
still runs, we introduce the notion of a protector : an item in the stack
can be protected by a function call, which means that while that function
call is still ongoing, if the item is popped off the stack, that is a Stacked
Borrows violation and hence undefined behavior.3

Formally, we extend the items in the borrow stack with an optional
call ID:

CallId := N Item := Unique(t, c) | SharedRO(t, c) | SharedRW(t, c)

Here, c is an element ofCallId? :=CallId ∪ {⊥}. Every call ID represents
a function call (we can imagine it being associated with the stack frame).
We also assume that the semantics keeps track of the set of call IDs which
correspond to function calls that have not returned yet. We use Unique(t)
as notation for Unique(t,⊥), and similarly for the other kinds of items.

So, when do newly pushed items get protectors? Remember that we
have retag operations every time a reference is passed in as an argument,
read via a pointer, or returned from another function. The idea is that
we make the first case, the retag of the arguments, special in the sense
that this retag will protect any new items that it adds with the call ID of
the current function call. This will exactly capture the references passed
to a function, i.e., the ones that we know have to outlive the function call.
The protector ensures that the corresponding items will not be popped
during said function call. Syntactically, we will write retag[fn] x to
indicate that x is being retagged in the prologue of a function, and thus
its items get protected.

Now we add the following to our rules for Stacked Borrows:

Rule (retag-fn). When pushing new items to a location’s borrow stack
as part of a retag[fn] (in new-mutable-ref or new-shared-ref-1),
these items have their protector set to the call ID of the current function
call.

Rule (protector). Any time an item is popped (by use-2 or read-1),
check if it has a protector (c 6= ⊥). If it does, and if that call ID corresponds
to a function call that is still ongoing (that is, the corresponding stack
frame is still in the call stack), we say that the protector is “active”, and
popping an active protector is undefined behavior.

The code of example2_down changes a bit to reflect that we need the
new kind of retag for x:

1 // Moving a read down across f().
2 fn example2_down(x: &i32, f: impl FnOnce(&i32)) -> i32 {
3 retag[fn] x;
4 let val = *x;
5 f(x);
6 return val; // Can return *x instead.
7 }

3 This gives functions a special
status that other code blocks
do not enjoy; that status is lost
when a function is inlined. We
consider this reasonable because
within a function, lifetimes in
Rust are subject to inference (and
inference can and will change as
Rust evolves), but the rule that the
lifetime of a reference passed to a
function outlives the function call
is set in stone. In the future, we
would like to explore a more explicit
representation that enables this
information to be preserved during
inlining.

247

Part III: Stacked Borrows Chapter 16: Protectors and interior mutability

If we now consider the previous counterexample again, this time the
borrow stack of ` at the beginning of the execution of the closure is:

[Unique(0),Unique(1),SharedRW(⊥),SharedRO(2),SharedRO(3, c)]

Here, c is the ID of the call to example2_down. But this means when the
closure executes and performs its raw pointer write, it will hit protector:
a raw pointer write has to make SharedRW(⊥) the top of the stack, which
requires popping off SharedRO(3, c), but that is not allowed because the
protector c is still active.

16.3 Proof sketches for the optimizations

We have seen that protectors successfully rule out what used to be a
counterexample against optimizing example2_down. In fact, protectors
enable us to validate the transformation:

1. Assume that after the retag[fn] in line 3, x has value Pointer(`, t).
We know that the top item of the borrow stack for location ` is
SharedRO(t, c). Here, c is the call ID of example2_down. We remember
the current scalar value stored at ` as s.

2. While f executes, we know that any write access to ` would pop all
SharedRO(_,_) off the stack. That would immediately be a Stacked
Borrows violation because SharedRO(t, c) has an active protector c.
Thus no write access can happen.

3. As a consequence, when f returns (if it ever returns), ` still stores s.
This justifies the transformation.

Almost the same argument works for example3_down, which moves
a write down across a function call. Again, x’s tag is at the top of the
borrow stack when f gets called, and it is protected. Any attempt by f to
access x (reading or writing) will pop off that item, which is not allowed
due to the protector. Thus f cannot observe the value stored in x, and
we are free to do the write later.4

What is remarkable about this transformation is that the compiler ends
up calling f with a different value stored in x, but we can show that this
cannot affect the behavior of programs complying with Stacked Borrows:
any access to x by f would immediately be undefined behavior. This
applies even if f runs into an infinite loop and we never reach step (3).

Completing the picture. To complete the matrix of moving both read and
write accesses to both shared and mutable references both up and down
across unknown code, we have also verified the following transformations:

1 // Moving a read down across f().
2 fn example1_down(x: &mut i32, f: impl FnOnce()) {
3 retag[fn] x;
4 let val = *x;
5 f();
6 return val; // Can return *x instead.
7 }

4 We assume that f cannot return
in other ways, such as through
an exception or via unwinding.
Unlike our formal model, Rust
supports unwinding. The same
transformation is still possible, but
the write has to be pushed down
into both the normal continuation
and the unwinding continuation.

248

Part III: Stacked Borrows Chapter 16: Protectors and interior mutability

1 // Moving a write up across f().
2 fn example3(x: &mut i32, f: impl FnOnce()) {
3 retag[fn] x;
4 *x = 42; // We can change this to write 13...
5 f();
6 *x = 13; // ...and remove this write.
7 }

The correctness arguments proceed just like above. Unlike the transfor-
mations that move down read accesses, example3 requires a retag[fn]
because when f is called, the memory in the transformed and the original
program differs: if f observed that difference and then entered an infinite
loop, that would constitute a counterexample to the optimization.5 So we
need protectors to make it impossible for f to observe the value stored
behind x.

This shows that reordering in both directions is possible for all reference
accesses.

16.4 Interior mutability

We have seen that Stacked Borrows supports all of the transformations
that it was designed to enable: moving uses of shared and mutable
references up and down across unknown code. This gives the compiler
the necessary freedom to exploit reference types for its alias analysis.
But to have Stacked Borrows adopted, we additionally need to make
sure that the large body of existing Rust code is actually compatible
with the rules of Stacked Borrows. Unfortunately, there is one feature of
Rust that is in direct contradiction to our treatment of shared references:
interior mutability. As explained in §8.6, and contrary to the exclusion
principle, Rust in fact does permit mutation of shared references under
some controlled circumstances. For example, Rust provides a type called
Cell that permits mutation through a set method that works with a
shared reference:
1 fn cells(x: &Cell<i32>, y: &Cell<i32>) -> i32 {
2 x.set(13);
3 y.set(42);
4 return x.get(); // Can return 13 or 42.
5 }

The return value of this function depends on whether x and y alias or not.
A &Cell<i32> is essentially a safe version of an int* in C: it can be read
from and written to by many parties at any time.6 In §8.6, we discussed
why this does not break type safety.

Of course, allowing mutation of aliased data makes alias analysis as
hard as it is in C. However, the Rust designers were aware that interior
mutability would wreak havoc with the otherwise very strong aliasing
guarantees that their type system provides, so they decided early on
that the programmer must “mark” data that will be subject to interior
mutability in a way that can be recognized by the compiler. To this
end, the standard library contains the “magic” type UnsafeCell<T>. An
UnsafeCell<T> is basically the same as a T; however, the type is specially
recognized by the compiler. This is exploited in the rule for mutation of

5 In contrast, if the same happens
with a moved-down read access, the
optimization is still correct. If f
never returns, it does not matter
what it does with x.

6 In fact, after inlining, the function
cells above looks just like C code
writing to and reading from int*.

249

Part III: Stacked Borrows Chapter 16: Protectors and interior mutability

shared data, which says that shared references may not be used to perform
mutation except when the mutation happens “inside” an UnsafeCell.
For example, Cell<T> is a newtype built around UnsafeCell<T> with a
safe API.

We exploit this information in Stacked Borrows and exempt the memory
inside an UnsafeCell<T> from the usual read-only restriction for shared
references. To track references into memory inside an UnsafeCell<T>,
we make use of the SharedRW items that we have already seen for raw
pointers: raw pointers and interior mutable shared references both permit
mutable aliasing, so it makes sense to treat them similarly.

“Partial” interior mutability. What makes this complicated is that, in
general, a shared reference can have “partial” interior mutability. So far,
we have pretended that a reference points to a single location and affects a
single stack, but of course in reality a reference like &i32 spans 4 locations.
All the rules that we have seen (both for creating references/raw pointers
and for extra actions to be performed on memory accesses) apply to the
stack of every location that is covered by the reference (with the size
determined by the type T). However, with &(i32, Cell<i32>), the first
4 bytes are not inside an UnsafeCell and are thus subject to the full set
of Stacked Borrows rules for shared references, but the second 4 bytes
are inside an UnsafeCell, and Stacked Borrows will permit mutation of
shared data for those 4 bytes only.

Consequently, when creating a shared reference with “partial” interior
mutability, we cannot perform the same actions for all locations that the
reference covers. We first pick a new tag t, and then we must find the
UnsafeCells in the memory region that the reference points to. This
is basically a type-based traversal of the memory the reference covers.7
For all locations outside of the UnsafeCells, we proceed as before and
push a new read-only SharedRO(t, c) on top of the stack, after following
read-1 (remember that creating a shared reference counts as a read
access). For all locations inside an UnsafeCell, we instead add to the
stack the read-write item SharedRW(t, c), permitting the same aliasable
mutation that mutable raw pointers enjoy.8

Creating a reference is not always an access. The other difference from
what we have seen so far is that, for the part inside the UnsafeCell<T>,
creating a shared reference does not count as a read access, and the new
item does not get added at the top of the stack, but instead in the middle.

To explain why we cannot treat creating a shared reference as a read
access when interior mutability is involved, we have to briefly discuss
RefCell<T>. RefCell<T> is a Rust standard library type that is somewhat
similar to Cell<T>, but it does allow interior pointers.9 It achieves safety
by tracking at run-time how many mutable and shared references to
the data exist, and making sure that there always is either exactly one
mutable reference or an arbitrary number of (read-only) shared references.
However, this means that it is possible to call the following function from
safe code in a way that the two references shared and mutable alias:

7 Rust supports polymorphism but
performs monomorphization during
compilation, so in the dynamic
semantics, we only have to deal with
concrete types.

8 For simplicity, this type-based
traversal does not inspect enums,
which are sum types in Rust. If
any variant of the enum contains an
UnsafeCell, we consider the entire
enum as being subject to interior
mutability. Determining the active
variant of an enum requires accessing
memory, so suddenly the Stacked
Borrows rules themselves would be
subject to the same restrictions as
all other memory accesses—this is a
complexity that we wanted to avoid.
The loss in optimization potential
is limited as compilers could only
optimize accesses to such enums if
they can predict which variant they
will be in.

9 Remember that Cell<T> cannot
allow interior pointers to ensure
that mutating the Cell<T> does
not invalidate possible aliases.
RefCell<T> uses dynamic tracking
to ensure that no interior pointers
exist when the data is mutated.

250

Part III: Stacked Borrows Chapter 16: Protectors and interior mutability

1 fn nasty_ref_cell(shared: &RefCell<i32>, mutable: &mut i32) {
2 retag[fn] shared; retag[fn] mutable;
3 let more_shared = &*shared;
4 *mutable = 23;
5 }

We can call this function with a shared reference to some RefCell and a
mutable reference to its contents, in which case the memory ranges they
point to overlap.

If creating a shared reference (with the reborrow in line 3, and in fact
already for the retag in line 2) counted as a read access, that would
violate uniqueness of mutable! After all, one important property of
mutable references is that there are no other accesses (read or write)
to that memory while the reference is used. We also cannot add a
new item for more_shared on top of the stack; that would violate the
invariant that the tag of mutable is at the top of all the stacks it points
to (after retagging)—an invariant which was crucial in our proof sketches.
However, we have to accept nasty_ref_cell and its caller, because they
consist solely of safe code. Rejecting this example would mean declaring
RefCell<T> unsound, which is not an option.

Consequently, we need to create a shared reference without popping
things off the stack. However, we still want the item to be “next to” the
one it is derived from. So, when creating a new shared reference from
Pointer(`, t), we add the new SharedRW just above where t is in the stack.

Rule (new-shared-ref-2). When creating a new shared reference from
some existing pointer value Pointer(`, t), we pick some fresh tag t′ and
use Pointer(`, t′) as the value for the shared reference.

For all locations covered by this reference that are inside an UnsafeCell,
we find the item for t in the borrow stack, and we add SharedRW(t′) just
above that item. (If there is no such item, the program has undefined
behavior.) For the remaining locations, this counts as a read access with
the old tag t (see read-1). Then we push SharedRO(t′) to the top of the
stack.

To keep the rules for shared references with interior mutability and
mutable raw pointers consistent (both use SharedRW, after all), we adjust
the latter to not count as an access either:

Rule (new-mutable-raw-2). When a mutable raw pointer is created
via a cast (expr as *mut T) from some mutable reference (&mut T) with
value Pointer(`, t), we find the item for t in the borrow stack, and we add
SharedRW(⊥) just above that item. (If there is no such item, the program
has undefined behavior.) Then the new pointer has value Pointer(`,⊥).

With these rules, reborrowing shared will just add some SharedRW
in the middle of the stack—so even if mutable aliases, we maintain the
property that the top item of the stack is a Unique with the same tag as
mutable. That is enough to keep our proofs working, and it also permits
a program calling nasty_ref_cell with aliasing pointers.

This means, however, that we can end up with many SharedRW next to
each other in the stack, e.g., when creating a bunch of shared references

251

Part III: Stacked Borrows Chapter 16: Protectors and interior mutability

with interior mutability from the same mutable reference. Just as we
considered the adjacent SharedRO on top of the stack as one “group” of
items that can all be used without removing each other from the stack,
we want to do the same with such a “group” of adjacent SharedRW items.
Thus we need to adjust the rules for (read and write) accesses in such a
way that if any of an adjacent group of SharedRW is used, the others in
that group all remain in the stack.

For writes, this looks as follows (also incorporating protector):

Rule (write-1). On any write access using pointer value Pointer(_, t),
do the following for each location ` affected by the access: pop the stack
until either the top item is Unique(t,_), or a SharedRW(t,_) exists in
the top “group” of adjacent SharedRW in the stack (i.e., SharedRW(t,_)
is in the stack, and there are only SharedRW above it). If this is not
possible, or if this pops off an item with an active protector, the program
has undefined behavior.

Read accesses and disabled items. Read accesses, too, need to account
for the fact that we now have tagged SharedRW items. We want to be able
to read from a SharedRW item without invalidating the other SharedRW
or SharedRO items that may be adjacent to it.10

However, we still need to make sure that there are never any Unique
items left above the item that justifies the access, and there is a slight
twist to how we do this. For reasons we will explain shortly, instead of
popping items off the stack, we keep all the items where they are but
mark the Unique ones as “disabled”. This means in particular that reading
from a SharedRW will maintain validity of all SharedRW items above it
on the stack (not just the ones that are adjacent to it).

To this end, we introduce a new kind of item:

Item := Unique(t, c) | SharedRO(t, c) | SharedRW(t, c) | Disabled

And we change the read rule as follows:

Rule (read-2). On any read access using pointer value Pointer(_, t),
do the following for each location ` affected by the access: find the
topmost (non-Disabled) item with tag t in the stack (there can be several
if t = ⊥). Replace all the Unique(_,_) above it by Disabled. If any of
these Unique(_,_) has an active protector, the program has undefined
behavior.

The reason for this quirk in read-2 is that testing with some real Rust
code quickly revealed the following pattern:
1 fn make_raw(y: &mut i32) -> *mut i32 { retag[fn] y; y as *mut i32 }
2
3 fn bad_pattern(x: &mut i32) {
4 retag[fn] x; // Assume x = Pointer(`, tx).
5 let raw_ptr = make_raw(x); // Desugars to ‘make_raw(&mut *x)‘.
6 // h(`) = [. . . ,Unique(tx),Unique(ttmp),Unique(ty), SharedRW(⊥)]
7 let val1 = *x;
8 // h(`) = [. . . ,Unique(tx)]
9 let val2 = unsafe { *raw_ptr }; // Fails because SharedRW(⊥) is no longer in the stack!
10 }

10 This parallels what we already
did for reading SharedRO items in
read-1 and writing SharedRW items
in write-1.

252

Part III: Stacked Borrows Chapter 16: Protectors and interior mutability

This pattern is widely used (and thus should not induce undefined be-
havior), but it would induce undefined behavior without the “disabled”
approach. Right before line 7, the borrow stack for ` contains items for
the intermediate mutable references that were created “between” x and
raw_ptr: the temporary variable that is introduced because passing a
reference to a function in Rust is implicitly reborrowing, and the new tag
that gets picked when y is retagged in make_raw.

The trouble is that reading from x has to invalidate the Unique items
above it: the example3_down transformation to move a write down across
a function call relies on the fact that other code cannot read from memory
covered by a mutable reference without causing a violation. But if we are
forced to adhere to the stack discipline, we can only invalidate the Unique
by first popping off the SharedRW(⊥), which makes line 9 illegal because
SharedRW(⊥) is no longer in the stack.

To fix this11, we deviate from the stack discipline in the way we handle
removal of tags on a read access. Namely, instead of popping items off the
stack until there are no more Unique above the accessed item (which would
pop off some SharedRW as well), we just disable the Unique that are above
the accessed item while leaving the SharedRW items alone. That way, the
SharedRW items do not suffer any “collateral damage” from the popping
of Unique items, and the above programming pattern is permitted.

This is the last adjustment we need. Let us now take a step back and
consider the semantics in its entirety—formally.

11 Note that in this example we
could replace the dereference
*raw_ptr in line 9 with *x because
make_raw is the identity function.
However, in general make_raw will
actually do some work that we do
not want to re-do.

253

Chapter 17

Formal operational semantics

The purpose of this chapter is to formally define what we have so far
described informally in the preceding two chapters.

17.1 High-level structure

At a high level, we are defining Stacked Borrows as a labeled transition
system where the labels are events (the most important ones being read
and write accesses and retagging) and the state is described by the
following record (some of the remaining relevant domains are shown in
Figure 17.1):

ς ∈ SState :=

stacks : Stacks,

calls : List(CallId),
nextptr : PtrId,

nextcall :CallId

ξ ∈ Stacks := Loc fin−⇀ Stack

Here, stacks tracks the stack for each location, calls tracks the current
list of active call IDs (needed to implement protector), and nextptr
and nextcall are used to generate fresh pointer IDs and call IDs.

This approach decouples Stacked Borrows from the rest of the language:
the operational semantics of the language can just include an SState and
take appropriate transitions on that state whenever a relevant event occurs.
Therefore, unlike in the previous chapters, we do not use a single heap
h ∈ Mem for both the value and stack at each location. Only the stack is
relevant for Stacked Borrows, and it is tracked by SState in its stacks
field; the actual values stored in the heap are assumed to be handled
by the rest of the semantics. In Figure 17.1, we also re-define Item as a
triple so that the common structure (a permission, a tag, and an optional
protector) is reflected in the structure of the data.

The possible events and corresponding transitions are likewise defined
in Figure 17.1. These events include all memory accesses (reads, writes,
allocations, and deallocations), as well as initiating and ending a function
call1 and, of course, retagging. Most of the parameters in these events
are “input parameters”, in the sense that they represent information that
comes from the outside world into the Stacked Borrows subsystem. Only
the call ID c in the call events and the new tag tnew in retag events are

1 This is relevant for the tracking of
call IDs to make protectors work.

255

Part III: Stacked Borrows Chapter 17: Formal operational semantics

Domains.

PtrId := N ι ∈ Item := Permission×Tag×CallId?

t ∈ Tag := PtrId? p ∈ Permission := Unique | SharedRW | SharedRO | Disabled
c ∈CallId := N S ∈ Stack := List(Item)

Events.

AccessType := AccessRead | AccessWrite m ∈ Mutability := Mutable | Immutable
RetagKind := Default | Raw | FnEntry PtrKind := Ref(m) | Raw(m) | Box
τ ∈ Type := FixedSize(n) | Ptr(k, τ) where n ∈ N, k ∈ PtrKind

| UnsafeCell(τ) | Union(τ∗) | Prod(τ∗) | Sum(τ∗)
ε ∈ Event := EAccess(a,Pointer(`, t), τ) where a ∈ AccessType, τ ∈ Type

| ERetag(Pointer(`, told), tnew, τ, k, k
′) where k ∈ PtrKind, k′ ∈ RetagKind

| EAlloc(Pointer(`, t), τ) | EDealloc(Pointer(`, t), τ)
| EInitCall(c) | EEndCall(c) where c ∈CallId

Transitions.
OS-access
MemAccessed(ς.stacks, ς.calls, a,Pointer(`, t), |τ |) = ξ′ ς ′ = ς with [stacks := ξ′]

ς
EAccess(a,Pointer(`,t),τ)−−−−−−−−−−−−−−−→ ς ′

OS-retag
Retag(ς.stacks, ς.nextptr, ς.calls,Pointer(`, told), τ, k, k′) = (tnew, ξ

′, n′)
ς ′ = ς with [stacks := ξ′,nextptr := n′]

ς
ERetag(Pointer(`,told),tnew,τ,k,k

′)−−−−−−−−−−−−−−−−−−−−→ ς ′

OS-alloc
∀`′ ∈ [`, `+ |τ |). `′ /∈ dom(ς.stacks) t = ς.nextptr
ξ′ = ς.stacks with `′∈[`,`+|τ |)[`′ := [(Unique, t,⊥)]]

ς ′ = ς with [stacks := ξ′,nextptr := ς.nextptr + 1]

ς
EAlloc(Pointer(`,t),τ)−−−−−−−−−−−−−→ ς ′

OS-dealloc
MemDeallocated(ς.stacks, ς.calls,Pointer(`, t), |τ |) = ξ′ ς ′ = ς with [stacks := ξ′]

ς
EDealloc(Pointer(`,t),τ)−−−−−−−−−−−−−−→ ς ′

OS-init-call
c = ς.nextcall ς ′ = ς with [calls := ς.calls ++ [c],nextcall := c+ 1]

ς
EInitCall(c)−−−−−−→ ς ′

OS-end-call
ς.calls = C ++ [c] ς ′ = ς with [calls := C]

ς
EEndCall(c)−−−−−−−→ ς ′

Figure 17.1: Stacked Borrows
domains and transitions.

256

Part III: Stacked Borrows Chapter 17: Formal operational semantics

“output parameters”, representing information that is returned by Stacked
Borrows to the outside world.2

The effect of every event on the Stacked Borrows state ς is described
by a function that computes the next state given the previous one. We
use ς with [field := e] as notation for updating a single field of a record
(and, as we will see later, also for updating elements of a finite partial
map). Considering the very algorithmic nature of Stacked Borrows, we
feel that it lends itself more to this computational style than a relational
one.

The two rules OS-init-call and OS-end-call implement the tracking
of active calls IDs for protector enforcement: OS-init-call picks a fresh
call ID c and adds it to the call stack calls, and OS-end-call ensures
that c is the topmost call ID in calls and removes it from the call stack.3

The rules that actually interact with memory are somewhat more
complicated. In the following, we first discuss accesses (reads and writes)
and (de)allocation in §17.2, and then retagging in §17.3.

17.2 Memory accesses

In Figure 17.2, we formalize read-2 and write-1 by implementing
MemAccessed, the function defining what happens on EAccess events.
The definition of the function itself is simple: it iterates over all locations
affected by the access and calls the helper function Access to compute
their new stacks. To determine the set of affected locations, we need to
know the size of the access; this is computed based on the type τ which is
part of the event.4 Access is a partial function: ⊥ is used as return value
to express that the access is illegal. If that is the case, our with operator
propagates the failure, so MemAccessed also returns ⊥ and the transition
system (Figure 17.1) gets stuck.

For both reads and writes, Access (Figure 17.2) starts by finding the
“granting item”, defined by the Grants function. Grants(p, a) determines if
an item with given permission p may be used to justify a memory access,
with a indicating whether this is a read or a write access. For a write, only
Unique and SharedRW are allowed (as in write-1); for a read we also
accept SharedRO (excluding only Disabled, as in read-2). Access uses
FindGranting to search the stack S top-to-bottom to find the topmost item
which matches the given tag t and grants the current access. Implicitly,
in the base case of the recursion where the list is empty, FindGranting
returns ⊥ (as none of its patterns match). This only happens when there
is no item that grants the desired access.

In Access, we use bind to denote the bind operation of the partiality
monad: if FindGranting returns ⊥, then that is propagated by Access;
otherwise we proceed with the remaining computation. Having determined
the granting item, Access implements the rest of read-2 and write-1,
respectively, as indicated by the comments in the definition.

Allocation and deallocation. Allocation, as defined in OS-dealloc in
Figure 17.1, picks a fresh tag t and assigns that tag Unique permission

2 In other words, for the input
parameters, Stacked Borrows is
receptive except when the particular
parameters chosen cause undefined
behavior. For output parameters,
Stacked Borrows expects the other
transition system it is coupled with
to be receptive.

3 For the formal proofs, in particular
when handling calls to unknown
code, it turns out to be beneficial
to enforce a stack discipline on call
IDs, and not just track the set of
active call IDs.

4 Types reflect just as much of the
Rust type system as is needed for
Stacked Borrows. This is a very
coarse-grained abstraction of the
types of λRust that we introduced
in §9.

257

Part III: Stacked Borrows Chapter 17: Formal operational semantics

(* Defines whether p can be used to justify accesses of type a. *)

Grants(p : Permission, a : AccessType) : B
Grants(Disabled,) := false
Grants(SharedRO,AccessWrite) := false
Grants(,) := true

(* Finds the topmost item in S that grants access a to t.
Returns the index in the stack (0 = bottom) and the permission of the granting item. *)

FindGranting(S : Stack, a : AccessType, t : Tag?) : (N× Permission)?

FindGranting(S ++ [ι], a, t) := if (ι.tag = t ∧ Grants(ι.perm, a))
then (|S|, ι.perm) else FindGranting(S, a, t)

(* Finds the bottommost item above i that is incompatible with a write justified by p. *)

FindFirstWIncompat(S : Stack, i : N, p : Permission) : N?

(* Writes to Unique are incompatible with everything above. *)
FindFirstWIncompat(S, i,Unique) := i+ 1
(* Writes to SharedRW are compatible with adjacent SharedRW, and nothing else.

So if the next item up is SharedRW then go on searching, otherwise stop. *)
FindFirstWIncompat(S, i,SharedRW) := if i+ 1 < |S| ∧ S(i+ 1).perm = SharedRW

then FindFirstWIncompat(S, i+ 1,SharedRW) else i+ 1

(* Computes the new stack after an access of type a with tag t.
Also depends on the active calls tracked by C. *)

Access(a : AccessType, S : Stack, t : Tag?, C : List(CallId)) : Stack?

Access(AccessRead, S, t, C) :=
bind (i,) = FindGranting(S,AccessRead, t) in
(* Disable all Unique above i; error out if any of them is protected. *)
if {S(j).protector | j ∈ (i, |S|) ∧ S(j).perm = Unique} ∩ C = ∅
then S with j∈(i,|S|)∧S(j).perm=Unique[j := (S(j) with [perm := Disabled])] else⊥

Access(AccessWrite, S, t, C) :=
bind (i, p) = FindGranting(S,AccessWrite, t) in
bind j = FindFirstWIncompat(S, i, p) in
(* Remove items at j and above; error out if any of them is protected. *)
if {S(i′).protector | i′ ∈ [j, |S|)} ∩ C = ∅
then S|[0,j) else⊥

(* Read and write accesses are just lifted pointwise for each location. *)

MemAccessed(ξ : Stacks, C : List(CallId), a,Pointer(`, t), n : N) : Stacks? :=
ξ with `′∈[`,`+n)[`′ := Access(a, ξ(`′), t, C)]

(* Deallocation is like a write, but also errors out if any item is still protected. *)

Dealloc(S : Stack, t : Tag?, C : List(CallId)) : 1? :=

bind = FindGranting(S,AccessWrite, t) in
if {ι.protector | ι ∈ S} ∩ C = ∅ then () else⊥

MemDeallocated(ξ : Stacks, C : List(CallId),Pointer(`, t), n : N) : Stacks? :=
ξ with `′∈[`,`+n)[`′ := (bind = Dealloc(ξ(`′), t, C) in⊥)]

Figure 17.2: Stacked Borrows
access semantics.

258

Part III: Stacked Borrows Chapter 17: Formal operational semantics

for every location in the new memory block. Deallocation is very similar
to a write access, except that it is an error to deallocate memory while
any item of a deallocated location is protected.

17.3 Retagging

In §15 and §16, Stacked Borrows took some extra actions any time a refer-
ence was created (new-mutable-ref and new-shared-ref-2) or cast to
a raw pointer (new-mutable-raw-2). We then explained retag as basi-
cally sugar for one of these operations. It turns out that we can simplify im-
plementation and formalization by swapping things around: an assignment
like let x = &mut expr in Rust becomes let x = &mut expr; retag x
in our language with explicit retagging, and retag takes care of assigning
a new tag (following new-mutable-ref, in this case). The &mut expr
itself just keeps the old tag. This is also the case for creating shared
references and casting references to raw pointers. For the latter, we insert
a retag[raw] to let retagging know that this is part of a reference-to-
raw-pointer cast. Altogether, this means that accesses and retag cover
everything we discussed in the previous chapters, without the need to
instrument reference creation or casts.5 To summarize, retagging happens
for all references passed as function arguments or received as return value,
for each assignment of reference type, and for casts from reference to raw
pointers.

So, let us take a closer look at retagging. Or rather, let us first look at
its core helper function, reborrowing, defined as Reborrow in Figure 17.3.
Reborrowing takes as parameters the tag told and location ` of the old
pointer (remember that retagging always starts with an existing pointer
and updates its tag), the type τ the pointer points to, the tag tnew and
pointer kind k of the new pointer, and prot, an optional call ID the new
items will be protected by. The pointer kind k here determines if the
new pointer is a reference, raw pointer, or Box; this affects which new
permission pnew will be used for the items we are about to add.

Reborrowing proceeds as follows for each location `′ covered by the
pointer (that list of locations is computed by FrozenIter(`, τ)):

1. Compute the permission pnew we are going to grant to tnew for `′ (done
by NewPerm):

• If x is a mutable reference (&mut T), pnew := Unique.
• If x is a mutable raw pointer (*mut T), pnew := SharedRW.
• If x is a shared reference (&T) or a constant raw pointer (*const T)6,

we check if `′ is frozen (definitely outside an UnsafeCell) or not.
This is determined by FrozenIter based on the type τ . For frozen
locations we use pnew := SharedRO; otherwise pnew := SharedRW.

2. The new item we want to add is ιnew := (pnew, tnew, prot). Proceed in
GrantTag to actually add that item to the stack.

3. The “access” a that this operation corresponds to is a write access if
pnew permits writing, and a read access otherwise.

4. Find the granting item for this access with tag told in ς.stacks(`′).

5 It also further emphasizes that
where we insert retag instructions is
a key knob to decide how restrictive
Stacked Borrows is (as described at
the end of §15.4).

6 Rust actually has two kinds of
raw pointers, mutable and constant.
Constant raw pointers correspond
to const pointers in C. We have
not discussed constant raw pointers
before to keep the discussion more
focused. They behave basically like
untagged shared references.

259

Part III: Stacked Borrows Chapter 17: Formal operational semantics

(* Inserts ι into S at index i. *)

InsertAt(S : Stack, ι : Item, i : N) := S|[0,i) ++ [ι] ++ S|[i,|S|)

(* Computes the new stack after inserting new item ιnew derived from old tag told .
Also depends on the list of active calls C (used by Access). *)

GrantTag(S : Stack, told : Tag?, ιnew : Item, C : List(CallId)) : Stack? :=
(* Determine the “access” this operation corresponds to. Step (3). *)

let a = (if Grants(ιnew.perm,AccessWrite) then AccessWrite else AccessRead) in
(* Find the item matching the old tag. Step (4). *)

bind (i, p) = FindGranting(S, a, told) in
if ιnew.perm = SharedRW then

(* A SharedRW just gets inserted next to the granting item. Step (5). *)

bind j = FindFirstWIncompat(S, i, p) in InsertAt(S, ιnew, j)
else

(* Otherwise, perform the effects of an access and add item at the top. Step (5). *)

bind S′ = Access(a, S, told , C) in InsertAt(S′, ιnew, |S′|)

(* Lists all locations covered by a value of type τ stored at location `, and indicate for each location
whether it is frozen (outside an UnsafeCell) or not. *)

FrozenIter(` : Loc, τ : Type) : List(Loc× B) :=[
(`′, b) | `′ ∈ [`, `+ |τ |) ∧ b = (`′ is outside of an UnsafeCell)

]
(* Computes the new permission granted to a reborrow with pointer kind k; fr indicates if this location

is frozen or not. Step (1). *)

NewPerm(k : PtrKind, fr : B) : Permission
(* Mutable references and boxes get Unique permission. *)
NewPerm(Ref(Mutable) | Box,) := Unique
(* Mutable raw pointers get SharedRW permission. *)
NewPerm(Raw(Mutable),) := SharedRW
(* Shared references and const raw pointers depend on whether the location is frozen. *)
NewPerm(Ref(Immutable) | Raw(Immutable), fr) := if fr then SharedRO else SharedRW

(* Reborrow the memory pointed to by Pointer(`, told) for pointer kind k and pointee type τ . prot
indicates if the item should be protected. *)

Reborrow(ξ : Stacks, C : List(CallId),Pointer(`, told), τ : Type, k : PtrKind, tnew : Tag?, prot :CallId?)
: Stacks? :=

(* For each location, determine the new permission and add a corresponding item. *)

ξ with (`′,fr)∈FrozenIter(`,τ)[`′ :=

let pnew = NewPerm(k, fr) in (* Step (1). *)

let ιnew = (pnew, tnew, prot) in (* Step (2). *)

GrantTag(ξ(`′), told , ιnew, C)]
Figure 17.3: Stacked Borrows
reborrowing semantics.

260

Part III: Stacked Borrows Chapter 17: Formal operational semantics

5. Check if pnew = SharedRW.

• If yes, add the new item ιnew just above the granting item.
• Otherwise, perform the effects of a read or write access (as deter-

mined by a) to `′ with told. Then, push the new item ιnew on top
of the stack.

The retag instruction now just needs to determine the parameters for
reborrowing. This is done by the helper function NewTagAndProtector in
Figure 17.4. Given the pointer kind k and the kind of retag k′ (regular
retag, retag[fn], or retag[raw]), the new tag tnew and protector prot
are computed as follows: raw pointers get new tag ⊥ without a protector,
but only on retag[raw] (otherwise they are ignored); Box pointers get a
fresh tag but no protector; references get a fresh tag and on retag[fn]
also a protector.

(* For a given pointer kind and retag kind, determine the tag and protector used for reborrowing.
Also returns the new “next tag”. *)

NewTagAndProtector(n : N, k : PtrKind, k′ : RetagKind, C : List(CallId)) : (Tag? ×CallId? × N)?

(* Raw retags are used for reference-to-raw casts: the pointer gets untagged. *)
NewTagAndProtector(n,Raw(),Raw,) := (⊥,⊥, n)
(* Boxes get a fresh tag and never a protector. *)
NewTagAndProtector(n,Box, ,) := (n,⊥, n+ 1)
(* References get a fresh tag and sometimes a protector. *)
NewTagAndProtector(n,Ref(), , C) := (n, if k′ = FnEntry then top(C) else⊥, n+ 1)

(* Top-level retag operation. Computes the new tag and new state. *)

Retag(ς : SState,Pointer(`, told), τ : Type, k : PtrKind, k′ : RetagKind) : (Tag× SState)? :=
(* If we can compute the next tag and protector, then try reborrowing. *)

if bind (tnew, prot, n′) = NewTagAndProtector(ς.nextptr, k, k′, ς.calls) then
bind ξ′ = Reborrow(ς.stacks, ς.calls,Pointer(`, told), τ, k, tnew, prot) in
(tnew, ς with [stacks := ξ′,nextptr := n′])

else
(* Otherwise, do nothing. *)

(told , ς)

Figure 17.4: Stacked Borrows
retagging semantics.

261

Chapter 18

Evaluation

As described in the introduction, we have evaluated Stacked Borrows
in two ways. First, to ensure that the model actually accepts enough
real Rust code to be a realistic option, we implemented this model in
an existing Rust interpreter called Miri.1 Secondly, we formalized the
informal proof sketches given in previous chapters in Coq.

18.1 Miri

We implemented Stacked Borrows in Miri to be able to test existing
bodies of unsafe Rust code and make sure the model we propose is
not completely in contradiction with how real Rust code gets written.
Moreover, this also served to test a large body of safe code (including code
that relies on non-lexical lifetimes), empirically verifying that Stacked
Borrows is indeed a dynamic version of the borrow checker and accepts
strictly more code than its static counterpart.

Having an implementation of Stacked Borrows also proved extremely
valuable during development; it allowed us to quickly iterate with new
rules and validate them against a few key test cases, easily discarding
ideas that did not have the intended effect. We only started formalization
after the model survived our testing in Miri.

Implementation. Miri is an interpreter that operates on the MIR, an
intermediate representation in the Rust compiler. MIR is an imperative,
non-SSA, control-flow-graph based IR with a fairly small set of operations,
which makes it well suited for an interpreter. The interpreter was already
able to run basic Rust programs, so all we had to do was add the extra
checks imposed by Stacked Borrows to it.

It was relatively straightforward to translate our operational rules into
Rust code that runs whenever the interpreted program reads from or
writes to memory. More interesting was the handling of retag; for this
we decided to add a new primitive MIR statement and implemented a
compiler pass (conceptually part of MIR construction in the compiler)
that inserts retag statements automatically at the appropriate locations.

The implementation is fairly naive; the only optimization worth men-
tioning is that instead of storing a borrow stack per location, we store
one stack for an adjacent range of locations that all share the same stack.
Any memory access covering that entire range (say, a 4-byte access where
these 4 locations share their stack) just performs the Stacked Borrows

1 Available online at https://
github.com/rust-lang/miri/.

263

https://github.com/rust-lang/miri/
https://github.com/rust-lang/miri/

Part III: Stacked Borrows Chapter 18: Evaluation

read/write action once. The ranges get automatically split and merged
as the stack of adjacent locations diverges and re-unifies. For example,
memory storing an i32 that is never subject to byte-wise accesses just
needs a single borrow stack instead of 4 of them.

These changes have all been accepted into Miri, so running Miri now
by default checks the program for conformity with Stacked Borrows.2 In
particular, all our optimization counterexamples from §15 and §16 are
flagged appropriately by Miri.

Testing and results. We ran part of the Rust standard library test suites
in Miri. Miri is not very efficient, but it is fast enough for this purpose:
the overall slowdown of Miri with Stacked Borrows compared to compiling
the code with optimizations and running that is around 1000x; compared
to Miri without Stacked Borrows the slowdown is around 2x. We did not
run the parts that are mostly concerned with host OS interaction (such
as network and file system access) because Miri does not support those
operations. The part that we did test includes key data structures (e.g.,
Vec, VecDeque, BTreeMap, HashMap), primitives for interior mutability
(Cell, RefCell), string formatting, arrays/slices, and iterator combinators.
All of these involve interesting unsafe code using plenty of raw pointers.

Across all these tests, we found in total 7 cases of unsafe code not
following Stacked Borrows. In two of these cases,3 the code accidentally
turned a shared reference into a mutable one. This is a pattern that the
Rust designers explicitly forbade since day one; there is no question that
such code is illegal, and thus patches to fix it were promptly accepted.

In three cases,4 code created mutable references that were never used
to access memory, but for Stacked Borrows, the mere fact that they exist
already makes them in conflict with existing pointers (because creating a
mutable reference is considered a write access). These could all be fixed by
adapting the code, but one of them required some refactoring to use fewer
mutable references and more raw pointers in BTreeMap. The fourth case5
is similar, but this time was only visible to unsafe clients of Vec. These
clients were making assumptions about Vec that are explicitly supported
by the documentation, but were again violated by Vec internally creating
(but not accessing) a conflicting mutable reference. We submitted patches
to fix all of these cases, and they were all accepted. Still, this indicates
that an interesting next step for Stacked Borrows is to be less aggressive
about asserting uniqueness of mutable references that are created but
never used.

The final case involves protectors.6 That code passes around references
wrapped inside a struct, and one function ends up invalidating these
references while it is still ongoing, leading to an item with an active
protector being popped. When we encountered this issue, instead of
changing the code, we decided to adjust our model to accommodate
this: we restricted retag to only operate on “bare” references, and not
perform retagging of references inside compound types such as structs.
At that point it was unclear if the code should be considered correct or
not, so this choice was helpful for us in order to focus our testing on
other aspects of Stacked Borrows. Since then, however, after completing

2 Miri also checks for many other
cases of undefined behavior, such as
illegal use of uninitialized memory.

3 Jung, “Fix futures creating alias-
ing mutable and shared ref”, 2018
[Jun18b]; Jung, “Fix str mutating
through a ptr derived from &self”,
2019 [Jun19c].

4 Jung, “VecDeque: fix for stacked
borrows”, 2018 [Jun18d]; Jung, “Fix
LinkedList invalidating mutable
references”, 2019 [Jun19a]; Jung,
“Fix overlapping references in
BTree”, 2019 [Jun19b].

5 Jung, “Vec::push invalidates
interior references even when it does
not reallocate”, 2019 [Jun19e].

6 Jung, “VecDeque’s Drain::drop
writes to memory that a shared
reference points to”, 2019 [Jun19f].

264

Part III: Stacked Borrows Chapter 18: Evaluation

implementation and formalization of Stacked Borrows, new evidence has
been discovered by the Rust community showing that this code is violating
aliasing assumptions currently being made by the compiler. What remains
unclear is whether this should be fixed by changing the code, changing
the alias analysis, or both (and giving the programmer more control).
Miri will be a valuable tool to explore this trade-off in the future.

Miri is also available as a “Tool” on the Rust Playground, where small
snippets of code can be tested directly in the browser.7 Rust developers
increasingly use Miri to check their code for undefined behavior, and if
they are surprised by the result—e.g., because code they deemed legal
violates Stacked Borrows—we will often hear about that through bug
reports or one of the various Rust community channels. So far, this
has not uncovered any unsafe code patterns that are incompatible with
Stacked Borrows beyond the ones discussed above.

We are now running Miri on the aforementioned Rust test suites
every night, to continuously monitor the standard library for new cases
of undefined behavior and Stacked Borrows violations. Some projects,
including HashMap (which is a separate library that is also shipped as part
of the Rust standard library), have also decided to run Miri as part of
their continuous integration for pre-merge testing of pull requests. The
Miri documentation contains a growing list of bugs8 that have been found
that way in various parts of the Rust ecosystem.

Overall, we believe that this evaluation demonstrates that Stacked
Borrows is a good fit for Rust. It might seem surprising that Rust
developers would follow the stack discipline mandated by Stacked Borrows
when mixing raw pointers and mutable references. Our hypothesis is that
this works well because (a) raw pointers are currently untagged, so as
long as any raw pointers may be used, all of them may be used, and (b)
developers are aware that violating uniqueness of mutable references is not
allowed, and already try as best they can to avoid it. Nevertheless, they
currently do not know exactly what they can and cannot do. The goal of
our work is to be able to give them a clearer answer to the questions that
frequently arise in this space.

18.2 Coq formalization

In this dissertation, we have given informal proof sketches of several
representative optimizations enabled by Stacked Borrows. To further
increase confidence in the semantics, we formalized its operational rules
(6k lines of Coq, including proofs showing some key properties of the
operational semantics) and turned our proof sketches into mechanized
correctness proofs of all example transformations mentioned in previous
chapters. To reason about transformations in the presence of unknown
code, we built a simulation framework (5k lines of Coq) based on open
simulations.9 See the Stacked Borrows paper10 and its technical appendix
for further details.

7 Available online at https://play.
rust-lang.org/.

8 https://github.com/rust-lang/
miri/#bugs-found-by-miri

9 Hur et al., “The marriage of
bisimulations and Kripke logical
relations”, 2012 [Hur+12].

10 Jung et al., “Stacked Borrows:
An aliasing model for Rust”, 2020
[Jun+20a].

265

https://play.rust-lang.org/
https://play.rust-lang.org/
https://github.com/rust-lang/miri/#bugs-found-by-miri
https://github.com/rust-lang/miri/#bugs-found-by-miri

Chapter 19

Related work

In terms of language semantics to enable better alias analysis, the most
closely related to Stacked Borrows are C’s strict aliasing rules and its
restrict qualifier.

Strict aliasing rules. These rules, broadly speaking, allow the compiler
to assume that pointers to different types do not alias. Every object (in
memory) has a particular effective type, which is used to rule out (most)
accesses happening through differently-typed pointers. This is also often
referred to as type-based alias analysis (TBAA).

The C standard1 describes the strict aliasing rules in an axiomatic
style. However, in particular the interaction of the strict aliasing rules
with unions is not very clear in the standard. Under some conditions, the
C standard permits “type-punning” through unions, meaning that a read
with the “wrong” type is sometimes allowed, but the details are fuzzy.2

The first CompCert memory model3 formalizes a very strong oper-
ational version of the strict aliasing rules that entirely disallows type-
punning through unions. However, this is not exploited for the purpose of
program analyses or transformations. Later versions of CompCert moved
to a simpler memory model that does not impose any strict aliasing
rules.4 CompCert also features a formally verified alias analysis,5 but
that analysis does not exploit extra aliasing information provided by the
language.

Krebbers6 gives another operational account of strict aliasing, with rules
for type-punning through unions that are based on the GCC developers’
interpretation of the C standard. He also shows a basic non-aliasing
“soundness” theorem, but no compiler transformations.

Long-standing compiler bugs in both GCC7 and clang8 indicate that
exploiting strict aliasing rules for optimizations is tricky and easily leads
to miscompilations. One issue is that C does allow (or, at least, the
standard does not forbid) writes that change the effective type, leading
to an inconsistency with the analysis that compilers perform.9 Moreover,
many real-world C idioms are violating the strict aliasing rules, and many
programmers consider the strict aliasing rules to be overly restrictive.10
For these reasons, many large projects, including the Linux kernel, outright
disable type-based alias analysis, essentially opting-in to a version of C
with less undefined behavior and fewer optimizations.

Moreover, type-based alias analysis is comparatively weak. In particu-
lar, it cannot be used to reason about unknown code; the compiler must

1 ISO Working Group 14, “Pro-
gramming languages – C”, 2018
[ISO18].

2 The standard says that such
type-punning reads are permitted
through a union if several conditions
all apply, including “that a decla-
ration of the completed type of the
union is visible” (§6.5.2.3 p6). It is
not clear exactly what that means.

3 Leroy and Blazy, “Formal verifi-
cation of a C-like memory model
and its uses for verifying program
transformations”, 2008 [LB08].

4 Leroy et al., “The CompCert
memory model, version 2”, 2012
[Ler+12].

5 Robert and Leroy, “A formally-
verified alias analysis”, 2012 [RL12].

6 Krebbers, “Aliasing restrictions
of C11 formalized in Coq”, 2013
[Kre13].

7 Hazeghi, “Store motion causes
wrong code for union access at -O3”,
2013 [Haz13].

8 De Fraine, “Wrong results with
union and strict-aliasing”, 2014 [De
14].

9 Sewell, “Type-changing and
effective type”, 2019 [Sew19].

10 Memarian and Sewell, “N2014:
What is C in practice? (Cerberus
survey v2): Analysis of responses”,
2016 [MS16].

267

Part III: Stacked Borrows Chapter 19: Related work

know the types of both memory accesses involved to determine if they
might alias. In contrast, as we have shown, Stacked Borrows enables
optimizations involving unknown code.

Hathhorn, Ellison, and Rosu11 formalize C in their K framework,12
including the rules around strict aliasing. Since K formalizations are
executable, this also provides a way to check real code for conformance
with the model. However, the paper does not give many formal details
of how the strict aliasing rules are defined. It remains unclear how the
authors decided to resolve the open questions mentioned above, and
whether that choice is compatible with real world C code and compilers.
There are also no theorems establishing that their model permits the
program transformations that motivate these rules.

Another tool for detecting at least some violations of strict aliasing
rules is libcrunch,13 which however is neither sound nor complete.14

restrict-qualified pointers. Since C99, the C language supports adding
the restrict qualifier to pointer types, an explicit annotation that can be
used by the programmer to give non-aliasing information to the compiler.
This qualifier indicates that accesses performed through this pointer
and pointers derived from it cannot alias with other accesses. One
common application of restrict is in tight numerical loops, e.g., matrix
multiplication, where assuming that the output matrix does not alias
either of the input matrices can make the difference between a fully
vectorized loop using SIMD (single instruction multiple data) operations
and purely scalar (unvectorized) code.

Conceptually, restrict is closely related to Stacked Borrows. In
fact, the Rust compiler (which uses LLVM as its backend) aims to emit
noalias, the LLVM equivalent of restrict, as annotations for references
in function argument position. LLVM considers pointers to not alias when
none of their respective accesses conflict (i.e., when all their accesses can
be mutually reordered); this means two read-only pointers never “alias”
even if the memory ranges they point to overlap. Rust exploits this to also
emit noalias for shared reference, except in the presence of UnsafeCell.

However, the exact semantics of noalias and restrict are unclear,
in particular when considering general pointers and not just function
arguments.15 Even for function arguments, uncertainty in the semantics
led to several LLVM bugs.16 For this reason, Rust currently does not
emit noalias annotations for mutable references (however, they are still
emitted for shared references without interior mutability).

The aforementioned formalization of C in the K framework17 also
includes some semantics for restrict, and a way to check programs for
conformance. However, similar to strict aliasing, the details of how the
axiomatic, informal standard got interpreted into a formal operational
semantics are not covered in the paper. For example, the standard defines
a notion of pointer expressions being “based on” an object in terms of
whether modifying the object to point elsewhere would change the value
of the expression (§6.7.3.1 p3). This definition is rather problematic when
also considering that control flow could change as a result of making the
object point elsewhere. So instead, the K formalization relies on tracking

11 Hathhorn, Ellison, and Rosu,
“Defining the undefinedness of C”,
2015 [HER15].

12 Rosu and Serbanuta, “An
overview of the K semantic frame-
work”, 2010 [RS10].

13 Available online at https:
//github.com/stephenrkell/
libcrunch.

14 Regehr, “Undefined behavior in
2017”, 2017 [Reg17].

15 Function arguments are easier
because there is a clear notion of
“scope” that one could use to say
for how long the aliasing guarantee
must hold.

16 Gohman, “Incorrect liveness
in DeadStoreElimination”, 2015
[Goh15]; Popov, “Loop unrolling
incorrectly duplicates noalias
metadata”, 2018 [Pop18].

17 Hathhorn, Ellison, and Rosu,
“Defining the undefinedness of C”,
2015 [HER15].

268

https://github.com/stephenrkell/libcrunch
https://github.com/stephenrkell/libcrunch
https://github.com/stephenrkell/libcrunch

Part III: Stacked Borrows Chapter 19: Related work

pointer provenance with “tags”, like Stacked Borrows. But it remains
unclear (and the paper does not discuss) how well this interpretation of
the standard reflects its intent, or how well it matches the interpretation
of the standard by programmers and compilers.

Fortran. Loosely related to C’s restrict are the aliasing rules of For-
tran,18 which disallow function parameters to alias (unless the programmer
specifically marks them as potentially aliasing). In fact, competing with
Fortran compilers was a primary motivation for adding restrict to C.19
Nguyen and Irigoin20 describe a tool that dynamically checks for alias-
ing violations in Fortran programs, but they do not verify any program
transformations.

Low-level language semantics. There is a large body of work on for-
malizing the semantics of C or LLVM (as representative examples of
highly optimized “low-level” languages) and in particular their handling
of pointers and pointer provenance.21 However, with the exception of
what was explained above, this work does not account for strict aliasing
rules and the restrict qualifier. They, instead, focus on orthogonal
complications, such as the handling of casts between integers and pointers,
and the use of pointer provenance to prevent pointer arithmetic across
object boundaries.

We have specifically designed Stacked Borrows to not assume that all
pointers have a known provenance, by adding the notion of an “untagged”
pointer. This means we should be able to basically take any of the existing
approaches to model integer-pointer casts, and equip it with a variant
of Stacked Borrows that handles pointers of unknown provenance as
untagged.

18 ANSI, “Programming language
FORTRAN”, 1978 [ANS78].

19 Drepper, “Memory part 5: What
programmers can do”, 2007 [Dre07].

20 Nguyen and Irigoin, “Alias
verification for Fortran code opti-
mization”, 2003 [NI03].

21 Memarian et al., “Exploring C
semantics and pointer provenance”,
2019 [Mem+19]; Krebbers, “The C
standard formalized in Coq”, 2015
[Kre15]; Kang et al., “A formal C
memory model supporting integer-
pointer casts”, 2015 [Kan+15];
Lee et al., “Reconciling high-level
optimizations and low-level code in
LLVM”, 2018 [Lee+18]; Hathhorn,
Ellison, and Rosu, “Defining the
undefinedness of C”, 2015 [HER15];
Norrish, “C formalised in HOL”,
1998 [Nor98].

269

Chapter 20

Conclusion

The goal of this dissertation was to demonstrate that a complex real-world
language such as Rust can be formally understood and that we can prove
meaningful theorems about it, not just on paper but in a machine-checked
proof assistant. Moreover, we can use formal methods to further the
development of Rust and help its designers as they flesh out the details of
the specification.

To support this claim, we have presented three major bodies of work:
Iris, RustBelt, and Stacked Borrows.

Iris is a framework for building higher-order concurrent separation
logics with a focus on deriving custom reasoning principles from lower-
level primitives. It forms the foundation necessary to state and prove the
theorems of RustBelt, and to do so in Coq. For this dissertation, we have
cut out a slice of the logic that covers everything needed for the semantic
model of Rust. But Iris is certainly not specific to RustBelt, and indeed
the list of publications that directly make use of Iris1 is growing rapidly.
In each of the last three years (2018–2020), there were several papers at
POPL that make use of Iris, and in 2018 and 2020 there was a POPL
tutorial to teach people how to use the logic. Iris is run as an open-source
project, and the number of people participating in discussions in the chat
room and submitting improvements to the Coq implementation has been
rising as well.

RustBelt consists of λRust, a core language calculus, as well as formal
models of some key Rust libraries containing unsafe code, and a safety
proof of both of these components. λRust models some key aspects of the
Rust type system: ownership, borrowing, and lifetimes. The safety proof
is carried out by means of a semantic model (or logical relation) expressed
in Iris, building on the novel lifetime logic which equips separation logic
with a notion of borrows and associated lifetimes. This model for the first
time enables the verification of Rust libraries implemented with unsafe
code, ensuring that their public API soundly encapsulates the unsafety.
This work has not only provided some key insights into the structure
of the Rust type system and, in particular, interior mutability; we have
also been able to fix a bug in the Rust standard library2 and follow-on
work has found and fixed another bug.3 But the impact of RustBelt on
Rust goes further than fixing a few bugs: discussion of a possible formal
model4 also played a role when the concept of pinning was introduced to
Rust.5 (Pinning can make an instance of a type “immovable” in memory
so that other data structures can safely point to it without borrowing it.)

1 see https://iris-project.org/

2 Jung, “MutexGuard<Cell<i32>>
must not be Sync”, 2017 [Jun17].

3 Jourdan, “Insufficient synchro-
nization in Arc::get_mut”, 2018
[Jou18].

4 Jung, “A formal look at pinning”,
2018 [Jun18a]; Jung, “Safe intrusive
collections with pinning”, 2018
[Jun18c].

5 withoutboats, “Tracking issue
for pin APIs (RFC 2349)”, 2018
[wit18].

271

https://iris-project.org/

Chapter 20: Conclusion

When extending the API of types that were verified in RustBelt, the Rust
teams are sometimes even delaying stabilization of that new API until
our soundness proof is extended accordingly.6

Stacked Borrows aims not to describe Rust as it exists, but to help
evolve the language by giving some precise aliasing rules to Rust’s reference
types, with the goal of enabling more type-based optimizations. This
work was done in close collaboration with the Rust language team, who
are wary of introducing more aggressive optimizations into the compiler
until there is a better understanding of what unsafe code is and is not
allowed to do. Stacked Borrows is not the official aliasing model of Rust,
but it is by far the most concrete proposal on the table, and so whenever
questions of aliasing come up in discussions, Stacked Borrows is used
as the de facto standard. We intend to continue to work with the Rust
community and development teams to adjust Stacked Borrows to their
needs, with the goal of eventually making a variant of Stacked Borrows
part of the official semantics of Rust.

20.1 Future work

As always, each time a scientific question is answered, at least two more
questions pop up in its place. As such, there are a lot of possibilities for
future research on top of the results of this dissertation.

Iris. The two most frequently requested extensions for Iris are linearity
and support for reasoning about liveness.

Linearity was already discussed in §6.2. The current state of the art of
linear reasoning with Iris is reflected in Iron,7 a logic that encodes resources
representing obligations (such as the obligation to free some memory)
as predicates in Iris, and then shows that these predicates themselves
form a proper separation logic. However, a more direct approach to
linearity could be to generalize the resource algebras of Iris to ordered
resource algebras (oRA). The idea here is to not fix extension order (4)
as the relation under which Iris assertions must be closed, but instead
to let the oRA pick a suitable order. Affine resources would pick the
extension order, linear resources would pick an order that just contains
the reflexive pairs (i.e., the diagonal), and conceivably there could be
resources that are somewhere “in between” affine and linear.8 A possible
set of axioms for oRAs has been described in §3.2 of the MoSeL paper.9
But many questions remain open; in particular, so far it is unclear what
the right notion of frame-preserving updates is for oRAs and how to obtain
principles such as “absence of memory leaks” as instances of something
more general, in the usual Iris way.

Liveness is notoriously hard to reason about in step-indexed logics,
because the step-index restricts the statements of the logic to only concern
traces of finite length. Some limited forms of liveness reasoning are still
possible,10 but that approach falls short of the kind of reasoning performed
e.g., in TaDA Live.11 One possible avenue for progress here could be to
extend step-indices from being natural numbers to being (possibly infinite)
ordinals; this is sometimes called transfinite step-indexing.12 An alternative

6 Liebow-Feeser, “Tracking issue
for Ref/RefMut::map_split”, 2018
[Lie18].

7 Bizjak et al., “Iron: Managing obli-
gations in higher-order concurrent
separation logic”, 2019 [Biz+19].

8 Cao, Cuellar, and Appel, “Bring-
ing order to the separation logic
jungle”, 2017 [CCA17b].

9 Krebbers et al., “MoSeL: A
general, extensible modal framework
for interactive proofs in separation
logic”, 2018 [Kre+18].

10 Tassarotti, Jung, and Harper, “A
higher-order logic for concurrent
termination-preserving refinement”,
2017 [TJH17].

11 D’Osualdo et al., “TaDA Live:
Compositional reasoning for termi-
nation of fine-grained concurrent
programs”, 2019 [DOs+19].

12 Svendsen, Sieczkowski, and
Birkedal, “Transfinite step-indexing:
Decoupling concrete and logical
steps”, 2016 [SSB16].

272

Chapter 20: Conclusion

approach would be to entirely avoid step-indexing, and explore how much
of Iris can still be used.

Another, smaller extension worth exploring has been mentioned in §7.2:
it looks like the authoritative RA can be generalized further to support
a Views-style13 reification function/relation, which could simplify proofs
(removing the need for to_fheap in §4.4) and make the authoritative RA
more generally applicable, such as when additional side-conditions must
be imposed on the authoritative value (e.g., to model a monotonically
growing partial bijection, which frequently comes up when considering
heap locations in a binary logical relation).

RustBelt. Even without extending the set of language facilities that we
can model, there are some interesting unsafely implemented libraries
that we have not yet verified in RustBelt. We already mentioned at the
end of §13.1 that there are some operations on Cell that our current
model does not support. Beyond that, two interesting libraries to verify
(with potentially far-reaching consequences for the entire model) are
Pin, which we already mentioned above, and “sound unchecked indexing”
using generativity of lifetimes,14 a Rust adaptation of the “branded types”
pattern also used in Haskell and OCaml.15

Another avenue for future work is supporting more Rust type system
features. First and foremost, while λRust can handle many cases of non-
lexical lifetimes (NLL) just fine (such as the first two examples from an
early blog post on NLL16—the third example is not accepted by the final
version of NLL), there are still some gaps between the borrow checker in
Rust and the one in λRust: λRust does not support two-phase borrows,17 a
special variant of mutable borrowing where the borrow is actually shared
(and read-only) for some time before becoming “activated” and turning
into a proper mutable borrow. The handling of shared references in λRust

is also more restrictive than that of current Rust. Both of these can in
many cases be worked around through a more clever translation, but it
is unclear if that is possible in general. And the Rust compiler team is
already working on the next generation of borrow checking in the form
of Polonius,18 which is even harder to compare to λRust: where previous
borrow checkers were implemented as subtle dataflow analyses, Polonius
is defined by translating Rust functions into a dialect of Datalog. Some
programs newly accepted by Polonius, such as “problem case #3” from the
NLL blog post, can be typechecked in λRust but require the somewhat odd
F-equalize rule (see §9.4). Further exploration is needed to determine
how the two systems compare on more examples. However, due to its
foundation in logic programming, Polonius also opens some exciting new
avenues for a formal analysis—it now seems feasible to relate λRust to the
actual analysis performed by the Rust compiler!

A tricky aspect of the Rust type system that λRust glosses over entirely
is traits, Rust’s take on Haskell-style type classes. Rust crucially relies on
coherence of traits, which means that for a given trait and type, there can
be no more than one implementation of the trait for the type. However,
there are some tricky corner cases where the current trait system allows
coherence to be violated.19 Even more interestingly, recently a soundness

13 Dinsdale-Young et al., “Views:
Compositional reasoning for concur-
rent programs”, 2013 [Din+13].

14 Beingessner, “You can’t spell
trust without Rust”, 2015 [Bei15].

15 Kiselyov and Shan, “Lightweight
static capabilities”, 2007 [KS07].

16 Matsakis, “Non-lexical lifetimes:
Introduction”, 2016 [Mat16b].

17 Matsakis, “Nested method calls
via two-phase borrowing”, 2017
[Mat17].

18 Matsakis, “An alias-based formu-
lation of the borrow checker”, 2018
[Mat18].

19 Ben-Yehuda, “Coherence can be
bypassed by an indirect impl for a
trait object”, 2019 [Ben19].

273

Chapter 20: Conclusion

bug20 related to Rust’s Pin type was found (and fixed) which involved
the interaction of unsafe code with the trait system. A full soundness
proof for Pin will thus involve reasoning about both unsafe code and
coherence of trait implementations.

Other unmodeled aspects of the language that would be interesting to
explore include the drop checker, which makes sure that destructors can be
executed correctly even when data structures contain pointer cycles, and
panics, a mechanism akin to exceptions whereby Rust methods can return
“abnormally” but still have resources managed properly via automatic
destructors.

An entirely unrelated opportunity for future work is to explore im-
provements to the lifetime logic. While the lifetime logic proved powerful
enough to capture subtle borrowing patterns such as those used by the
Rust types Rc and RefCell, it also turned out to often be quite tedious
to use. We have to constantly track which fraction of the token for which
lifetime is available, and we have to explicitly open and close lifetime
inclusion accessors. This is a continuing source of boilerplate in the
proofs. A possible improvement here could be to find a way to adopt the
approach proposed for temporary read-only permissions.21 The authors
introduce a duplicable “read-only” modality with rules that resemble
ours for shared references at “simple” types like i32. However, since
shared references permit interior mutability, read-only permissions are not
suited for directly modeling shared references. Nevertheless, it would be
interesting to explore whether this approach can facilitate the tracking of
lifetime tokens, just as read-only permissions eliminate the bookkeeping
involved in fractional points-to permissions. One challenge here is that
λRust supports non-lexical lifetimes, whereas read-only permissions are
strictly lexical.

Stacked Borrows. The primary goal for future work on Stacked Borrows
is to better match the patterns of unsafe code that can be found in the
wild. The evaluation with Miri identified two regular patterns of Stacked
Borrows violations (conflicting mutable references being created but not
used, and references in private fields being guarded by protectors). A
more tree-based structure as mentioned in §15.3 could help with the issue
for mutable references in particular, but it remains open to what extent
this reduces the set of optimizations the compiler can perform. Stacked
Borrows also currently lacks good support for two-phase borrows (already
mentioned above). Two-phase borrows need special treatment in the
aliasing model; currently, Stacked Borrows as implemented in Miri treats
them as freely aliasiable, thus losing optimizations for such references.
We suspect that trees would help to rule out more undesirable behaviors
and thus allow proper optimizations for two-phase borrows as well.

Another aspect of Stacked Borrows that could be refined are protectors.
Currently, their scope is tied to a function call and thus lost during
inlining; a more explicit representation of scopes could help preserve this
information. This is closely related to recent proposals in LLVM that aim
to improve the interaction of inlining and scoped noalias annotations.

20 comex, “Unsoundness in Pin”,
2019 [com19].

21 Charguéraud and Pottier, “Tem-
porary read-only permissions for
separation logic”, 2017 [CP17].

274

Chapter 20: Conclusion

The formal version of Stacked Borrows we presented here works in
the context of a sequential language. But of course, Rust is a concur-
rent language, so Stacked Borrows has to also work well in that setting.
Concurrency has recently been implemented in Miri, so we should be
able to gather some initial practical experience with Stacked Borrows in
concurrent programs soon. It would be interesting to also expand the
formal model and its accompanying proofs to consider concurrency. We
expect the approach to scale to concurrency as long as all race conditions
occur with pointers that have SharedRW permission, and indeed race
conditions with other pointers should be data races and thus are not
allowed in well-behaved programs.

Finally, it would be great to see Stacked Borrows and RustBelt com-
bined, by showing that the λRust type safety and library correctness proofs
still hold under this stricter operational semantics—stricter in that it
imposes more restrictions on what constitutes well-defined behavior. If
we then also relate the λRust type system to Polonius, we can complement
our optimization correctness proofs by formally verifying that all safe
code accepted by the Rust compiler conforms with Stacked Borrows.

275

Bibliography

[AFM05] Amal Ahmed, Matthew Fluet, and Greg Morrisett. “A step-indexed model of substructural state”.
In: ICFP. 2005. doi: 10.1145/1086365.1086376.

[AFM07] Amal Ahmed, Matthew Fluet, and Greg Morrisett. “L3: A linear language with locations”. In:
Fundamenta Informaticae 77.4 (2007).

[Ahm+10] Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and
Daniel C. Wang. “Semantic foundations for typed assembly languages”. In: TOPLAS 32.3 (2010).
doi: 10.1145/1709093.1709094.

[Ahm04] Amal Ahmed. “Semantics of types for mutable state”. PhD thesis. Princeton University, 2004.

[AL91] Martín Abadi and Leslie Lamport. “The existence of refinement mappings”. In: TCS 82.2 (1991).
doi: 10.1016/0304-3975(91)90224-P.

[AM01] Andrew W. Appel and David McAllester. “An indexed model of recursive types for foundational
proof-carrying code”. In: TOPLAS 23.5 (2001). doi: 10.1145/504709.504712.

[Ama+16] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam O’Connor, Joel
Beeren, Yutaka Nagashima, Japheth Lim, Thomas Sewell, et al. “Cogent: Verifying high-assurance
file system implementations”. In: ASPLOS. 2016. doi: 10.1145/2872362.2872404.

[ANS78] ANSI. “Programming language FORTRAN”. ANSI X3.9-1978. 1978.

[App+07] Andrew W. Appel, Paul-André Melliès, Christopher Richards, and Jérôme Vouillon. “A very
modal model of a modern, major, general type system”. In: POPL. 2007. doi: 10.1145/1190216.
1190235.

[App01] Andrew W. Appel. “Foundational proof-carrying code”. In: LICS. 2001. doi: 10.1109/LICS.
2001.932501.

[App07] Andrew W. Appel. “Compiling with continuations”. Cambridge University Press, 2007.

[App14] Andrew W. Appel. “Program logics – for certified compilers”. Cambridge University Press, 2014.
isbn: 978-1-10-704801-0.

[Ash75] Edward A. Ashcroft. “Proving assertions about parallel programs”. In: Journal of Computer and
System Sciences 10.1 (1975). doi: 10.1016/S0022-0000(75)80018-3.

[Ast+19] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. “Leveraging Rust
types for modular specification and verification”. In: PACMPL 3.OOPSLA, Article 147 (2019).
doi: 10.1145/3360573.

[Bat15] Mark John Batty. “The C11 and C++11 concurrency model”. PhD thesis. University of Cambridge,
UK, 2015.

[BB17] Aleš Bizjak and Lars Birkedal. “On models of higher-order separation logic”. In: MFPS. 2017.
doi: 10.1016/j.entcs.2018.03.016.

[BCY05] Richard Bornat, Cristiano Calcagno, and Hongseok Yang. “Variables as resource in separation
logic”. In: MFPS. 2005. doi: 10.1016/j.entcs.2005.11.059.

277

https://doi.org/10.1145/1086365.1086376
https://doi.org/10.1145/1709093.1709094
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/2872362.2872404
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1109/LICS.2001.932501
https://doi.org/10.1109/LICS.2001.932501
https://doi.org/10.1016/S0022-0000(75)80018-3
https://doi.org/10.1145/3360573
https://doi.org/10.1016/j.entcs.2018.03.016
https://doi.org/10.1016/j.entcs.2005.11.059

[Bei15] Alexis Beingessner. “You can’t spell trust without Rust”. MA thesis. Carleton University, Ottawa,
Ontario, Canada, 2015.

[Ben15] Ariel Ben-Yehuda. “std::thread::JoinGuard (and scoped) are unsound because of reference cycles”.
Rust issue #24292. 2015. url: https://github.com/rust-lang/rust/issues/24292.

[Ben19] Ariel Ben-Yehuda. “Coherence can be bypassed by an indirect impl for a trait object”. Rust issue
#57893. 2019. url: https://github.com/rust-lang/rust/issues/57893.

[Bie06] Kevin Bierhoff. “Iterator specification with typestates”. In: SAVCBS. Portland, Oregon, 2006.
isbn: 1-59593-586-X. doi: 10.1145/1181195.1181212.

[Bio17] Christophe Biocca. “std::vec::IntoIter::as_mut_slice borrows &self, returns &mut of contents”.
Rust issue #39465. 2017. url: https://github.com/rust-lang/rust/issues/39465.

[Bir+11] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. “First
steps in synthetic guarded domain theory: Step-indexing in the topos of trees”. In: LICS. 2011.
doi: 10.1109/LICS.2011.16.

[Biz+19] Aleš Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. “Iron: Managing obligations
in higher-order concurrent separation logic”. In: PACMPL 3.POPL, Article 65 (2019). doi:
10.1145/3290378.

[Bor+05] Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. “Permission
accounting in separation logic”. In: POPL. 2005. doi: 10.1145/1040305.1040327.

[Boy03] John Boyland. “Checking interference with fractional permissions”. In: SAS. Vol. 2694. LNCS.
2003. doi: 10.1007/3-540-44898-5_4.

[BPP16] Thibaut Balabonski, François Pottier, and Jonathan Protzenko. “The design and formalization of
Mezzo, a permission-based programming language”. In: TOPLAS 38.4 (2016). doi: 10.1145/
2837022.

[Bro06] Stephen D. Brookes. “Variables as resource for shared-memory programs: Semantics and sound-
ness”. In: MFPS. 2006. doi: 10.1016/j.entcs.2006.04.008.

[Bro07] Stephen Brookes. “A semantics for concurrent separation logic”. In: TCS 375.1–3 (2007). doi:
10.1016/j.tcs.2006.12.034.

[Bur19] Adam Burch. “Using Rust in Windows”. Blog post. 2019. url: https://msrc-blog.microsoft.
com/2019/11/07/using-rust-in-windows/.

[BW81] M. Broy and M. Wirsing. “On the algebraic specification of nondeterministic programming
languages”. In: CAAP. 1981. doi: 10.1007/3-540-10828-9_61.

[Cao+18] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. “VST-
Floyd: A separation logic tool to verify correctness of C programs”. In: JAR 61.1-4 (2018). doi:
10.1007/s10817-018-9457-5.

[Cao17] Qinxiang Cao. Private communication. Apr. 2017.

[CCA17a] Qinxiang Cao, S. Cuellar, and Andrew W. Appel. “Putting order to the separation logic jungle”.
In: Draft. 2017. url: https://scholar.princeton.edu/sites/default/files/qinxiang/
files/putting_order_to_the_separation_logic_jungle_revised_version.pdf.

[CCA17b] Qinxiang Cao, Santiago Cuellar, and Andrew W. Appel. “Bringing order to the separation logic
jungle”. In: APLAS. Vol. 10695. LNCS. 2017. doi: 10.1007/978-3-319-71237-6_10.

[Cha+19] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. “Verifying concurrent,
crash-safe systems with Perennial”. In: SOSP. ACM, 2019. doi: 10.1145/3341301.3359632.

[com19] comex. “Unsoundness in Pin”. Rust internals forum discussion. 2019. url: https://internals.
rust-lang.org/t/unsoundness-in-pin/11311.

278

https://github.com/rust-lang/rust/issues/24292
https://github.com/rust-lang/rust/issues/57893
https://doi.org/10.1145/1181195.1181212
https://github.com/rust-lang/rust/issues/39465
https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.1145/3290378
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1145/2837022
https://doi.org/10.1145/2837022
https://doi.org/10.1016/j.entcs.2006.04.008
https://doi.org/10.1016/j.tcs.2006.12.034
https://msrc-blog.microsoft.com/2019/11/07/using-rust-in-windows/
https://msrc-blog.microsoft.com/2019/11/07/using-rust-in-windows/
https://doi.org/10.1007/3-540-10828-9_61
https://doi.org/10.1007/s10817-018-9457-5
https://scholar.princeton.edu/sites/default/files/qinxiang/files/putting_order_to_the_separation_logic_jungle_revised_version.pdf
https://scholar.princeton.edu/sites/default/files/qinxiang/files/putting_order_to_the_separation_logic_jungle_revised_version.pdf
https://doi.org/10.1007/978-3-319-71237-6_10
https://doi.org/10.1145/3341301.3359632
https://internals.rust-lang.org/t/unsoundness-in-pin/11311
https://internals.rust-lang.org/t/unsoundness-in-pin/11311

[Coq20] The Coq Team. “The Coq proof assistant”. 2020. url: https://coq.inria.fr/.

[COY07] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. “Local action and abstract separation
logic”. In: LICS. 2007. doi: 10.1109/LICS.2007.30.

[CP17] Arthur Charguéraud and François Pottier. “Temporary read-only permissions for separation
logic”. In: ESOP. LNCS. 2017. doi: 10.1007/978-3-662-54434-1_10.

[CPN98] David G. Clarke, John M. Potter, and James Noble. “Ownership types for flexible alias protection”.
In: OOPSLA. 1998. doi: 10.1145/286936.286947.

[DAB11] Derek Dreyer, Amal Ahmed, and Lars Birkedal. “Logical step-indexed logical relations”. In:
LMCS 7.2:16 (June 2011). doi: 10.2168/LMCS-7(2:16)2011.

[Dan+20] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. “RustBelt meets
relaxed memory”. In: PACMPL 4.POPL, Article 34 (2020). doi: 10.1145/3371102.

[dDG14] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. “TaDA: A logic for time
and data abstraction”. In: ECOOP. Vol. 8586. LNCS. 2014. doi: 10.1007/978-3-662-44202-9_9.

[De 14] Bruno De Fraine. “Wrong results with union and strict-aliasing”. LLVM issue #21725. 2014. url:
https://bugs.llvm.org/show_bug.cgi?id=21725.

[DF01] Robert DeLine and Manuel Fähndrich. “Enforcing high-level protocols in low-level software”. In:
PLDI. 2001. doi: 10.1145/381694.378811.

[DGW10] Thomas Dinsdale-Young, Philippa Gardner, and Mark J. Wheelhouse. “Abstraction and refinement
for local reasoning”. In: VSTTE. Vol. 6217. LNCS. 2010. doi: 10.1007/978-3-642-15057-9_14.

[DHA09] Robert Dockins, Aquinas Hobor, and Andrew W. Appel. “A fresh look at separation algebras and
share accounting”. In: APLAS. Vol. 5904. LNCS. 2009. doi: 10.1007/978-3-642-10672-9_13.

[Din+10] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor
Vafeiadis. “Concurrent abstract predicates”. In: ECOOP. Vol. 6183. LNCS. 2010. doi: 10.1007/
978-3-642-14107-2_24.

[Din+13] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok
Yang. “Views: Compositional reasoning for concurrent programs”. In: POPL. 2013. doi: 10.1145/
2429069.2429104.

[Dod+09] Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor Vafeiadis. “Deny-guarantee reason-
ing”. In: ESOP. Vol. 5502. LNCS. 2009. doi: 10.1007/978-3-642-00590-9_26.

[Dod+16] Mike Dodds, Suresh Jagannathan, Matthew J. Parkinson, Kasper Svendsen, and Lars Birkedal.
“Verifying custom synchronization constructs using higher-order separation logic”. In: TOPLAS
38.2, Article 4 (2016). doi: 10.1145/2818638.

[DOs+19] Emanuele D’Osualdo, Azadeh Farzan, Philippa Gardner, and Julian Sutherland. “TaDA Live: Com-
positional reasoning for termination of fine-grained concurrent programs”. In: CoRR abs/1901.05750
(2019). Preprint. url: http://arxiv.org/abs/1901.05750.

[dPJ20] Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan. “Spy game: Verifying a
local generic solver in Iris”. In: PACMPL 4.POPL, Article 33 (2020). doi: 10.1145/3371101.

[Dre+10] Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. “A relational modal logic for
higher-order stateful ADTs”. In: POPL. 2010. doi: 10.1145/1706299.1706323.

[Dre07] Ulrich Drepper. “Memory part 5: What programmers can do”. LWN article. 2007. url: https:
//lwn.net/Articles/255364/.

[FD02] Manuel Fähndrich and Robert DeLine. “Adoption and focus: Practical linear types for imperative
programming”. In: PLDI. 2002. doi: 10.1145/512529.512532.

[Fen09] Xinyu Feng. “Local rely-guarantee reasoning”. In: POPL. 2009. doi: 10.1145/1480881.1480922.

279

https://coq.inria.fr/
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1007/978-3-662-54434-1_10
https://doi.org/10.1145/286936.286947
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.1145/3371102
https://doi.org/10.1007/978-3-662-44202-9_9
https://bugs.llvm.org/show_bug.cgi?id=21725
https://doi.org/10.1145/381694.378811
https://doi.org/10.1007/978-3-642-15057-9_14
https://doi.org/10.1007/978-3-642-10672-9_13
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1007/978-3-642-00590-9_26
https://doi.org/10.1145/2818638
http://arxiv.org/abs/1901.05750
https://doi.org/10.1145/3371101
https://doi.org/10.1145/1706299.1706323
https://lwn.net/Articles/255364/
https://lwn.net/Articles/255364/
https://doi.org/10.1145/512529.512532
https://doi.org/10.1145/1480881.1480922

[FFS07] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. “On the relationship between concurrent separation
logic and assume-guarantee reasoning”. In: ESOP. Vol. 4421. LNCS. 2007. doi: 10.1007/978-3-
540-71316-6_13.

[FGK19] Dan Frumin, Léon Gondelman, and Robbert Krebbers. “Semi-automated reasoning about non-
determinism in C expressions”. In: ESOP. Vol. 11423. LNCS. Springer, 2019. doi: 10.1007/978-
3-030-17184-1_3.

[FKB18] Dan Frumin, Robbert Krebbers, and Lars Birkedal. “ReLoC: A mechanised relational logic for
fine-grained concurrency”. In: LICS. 2018. doi: 10.1145/3209108.3209174.

[FKB21] Dan Frumin, Robbert Krebbers, and Lars Birkedal. “Compositional non-interference for fine-
grained concurrent programs”. In: SP. To appear. IEEE, 2021.

[FMA06] Matthew Fluet, Greg Morrisett, and Amal Ahmed. “Linear regions are all you need”. In: ESOP.
LNCS. 2006. doi: 10.1007/11693024_2.

[Fu+10] Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. “Reasoning about optimistic
concurrency using a program logic for history”. In: CONCUR. Vol. 6269. LNCS. 2010. doi:
10.1007/978-3-642-15375-4_27.

[GBC11] Alexey Gotsman, Josh Berdine, and Byron Cook. “Precision and the conjunction rule in concurrent
separation logic”. In: MFPS. 2011. doi: 10.1016/j.entcs.2011.09.021.

[Gia+20] Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and Robbert Krebbers. “Scala
step-by-step: Soundness for dot with step-indexed logical relations in Iris”. In: ICFP. 2020. doi:
10.1145/3408996.

[GLS01] Rakesh Ghiya, Daniel M. Lavery, and David C. Sehr. “On the importance of points-to analysis
and other memory disambiguation methods for C programs”. In: PLDI. 2001. doi: 10.1145/
378795.378806.

[Goh15] Dan Gohman. “Incorrect liveness in DeadStoreElimination”. LLVM issue #25422. 2015. url:
https://bugs.llvm.org/show_bug.cgi?id=25422.

[Gor+12] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy. “Unique-
ness and reference immutability for safe parallelism”. In: OOPSLA. ACM, 2012. doi: 10.1145/
2384616.2384619.

[Gro+02] Dan Grossman, J. Gregory Morrisett, Trevor Jim, Michael W. Hicks, Yanling Wang, and James
Cheney. “Region-based memory management in Cyclone”. In: PLDI. 2002. doi: 10.1145/512529.
512563.

[GS02] Douglas P. Gregor and Sibylle Schupp. “Making the usage of STL safe”. In: IFIP TC2/WG2.1
Working Conference on Generic Programming. July 2002. doi: 10.1007/978-0-387-35672-3_7.

[Har16] Robert Harper. “Practical foundations for programming languages (second edition)”. New York,
NY, USA: Cambridge University Press, 2016.

[Haz13] Dara Hazeghi. “Store motion causes wrong code for union access at -O3”. GCC issue #57359.
2013. url: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57359.

[HBK20] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. “Actris: Session-type based
reasoning in separation logic”. In: PACMPL 4.POPL, Article 6 (2020). doi: 10.1145/3371074.

[HER15] Chris Hathhorn, Chucky Ellison, and Grigore Rosu. “Defining the undefinedness of C”. In: PLDI.
2015. doi: 10.1145/2737924.2737979.

[Hob08] Aquinas Hobor. “Oracle semantics”. PhD thesis. Princeton University, 2008.

[Hor97] Susan Horwitz. “Precise flow-insensitive may-alias analysis is NP-hard”. In: TOPLAS 19.1 (1997).
doi: 10.1145/239912.239913.

280

https://doi.org/10.1007/978-3-540-71316-6_13
https://doi.org/10.1007/978-3-540-71316-6_13
https://doi.org/10.1007/978-3-030-17184-1_3
https://doi.org/10.1007/978-3-030-17184-1_3
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.1007/11693024_2
https://doi.org/10.1007/978-3-642-15375-4_27
https://doi.org/10.1016/j.entcs.2011.09.021
https://doi.org/10.1145/3408996
https://doi.org/10.1145/378795.378806
https://doi.org/10.1145/378795.378806
https://bugs.llvm.org/show_bug.cgi?id=25422
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/512529.512563
https://doi.org/10.1007/978-0-387-35672-3_7
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57359
https://doi.org/10.1145/3371074
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/239912.239913

[Hur+12] Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. “The marriage of bisimulations
and Kripke logical relations”. In: POPL. 2012. doi: 10.1145/2103656.2103666.

[HV13] Aquinas Hobor and Jules Villard. “The ramifications of sharing in data structures”. In: POPL.
ACM, 2013. doi: 10.1145/2429069.2429131.

[IO01] Samin S. Ishtiaq and Peter W. O’Hearn. “BI as an assertion language for mutable data structures”.
In: POPL. 2001. doi: 10.1145/360204.375719.

[Iri19] Iris Team. “The Iris 3.2 documentation”. 2019. url: https://plv.mpi-sws.org/iris/appendix-
3.2.pdf.

[ISO11] ISO Working Group 21. “Programming languages – C++”. ISO/IEC 14882:2011. 2011.

[ISO18] ISO Working Group 14. “Programming languages – C”. ISO/IEC 9899:2018. 2018.

[JB12] Jonas Braband Jensen and Lars Birkedal. “Fictional separation logic”. In: ESOP. Vol. 7211.
LNCS. 2012. doi: 10.1007/978-3-642-28869-2_19.

[Jef18] Alan Jeffrey. “Rust 1.20 caused pinning to become incorrect”. Rust internals forum discussion.
2018. url: https://internals.rust-lang.org/t/rust-1-20-caused-pinning-to-become-
incorrect/6695.

[Jim+02] Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and Yanling
Wang. “Cyclone: A safe dialect of C”. In: USENIX ATC. 2002. url: https://www.usenix.org/
legacy/publications/library/proceedings/usenix02/jim.html.

[Jon10] Cliff B. Jones. “The role of auxiliary variables in the formal development of concurrent programs”.
In: Reflections on the Work of C. A. R. Hoare. 2010. doi: 10.1007/978-1-84882-912-1_8.

[Jou18] Jacques-Henri Jourdan. “Insufficient synchronization in Arc::get_mut”. Rust issue #51780. 2018.
url: https://github.com/rust-lang/rust/issues/51780.

[Jun+15] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and
Derek Dreyer. “Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning”. In:
POPL. 2015. doi: 10.1145/2676726.2676980.

[Jun+16] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. “Higher-order ghost state”. In:
ICFP. 2016. doi: 10.1145/2951913.2951943.

[Jun+18a] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “RustBelt: Securing
the foundations of the Rust programming language”. In: PACMPL 2.POPL, Article 66 (2018).
doi: 10.1145/3158154.

[Jun+18b] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek
Dreyer. “Iris from the ground up: A modular foundation for higher-order concurrent separation
logic”. In: JFP 28, e20 (Nov. 2018). doi: 10.1017/S0956796818000151.

[Jun+20a] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. “Stacked Borrows: An aliasing
model for Rust”. In: PACMPL 4.POPL, Article 41 (2020). doi: 10.1145/3371109.

[Jun+20b] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “Safe systems program-
ming in Rust: The promise and the challenge”. In: CACM (2020). To appear.

[Jun+20c] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek
Dreyer, and Bart Jacobs. “The future is ours: Prophecy variables in separation logic”. In: PACMPL
4.POPL, Article 45 (2020). doi: 10.1145/3371113.

[Jun17] Ralf Jung. “MutexGuard<Cell<i32>> must not be Sync”. Rust issue #41622. 2017. url:
https://github.com/rust-lang/rust/issues/41622.

[Jun18a] Ralf Jung. “A formal look at pinning”. 2018. url: https://www.ralfj.de/blog/2018/04/05/a-
formal-look-at-pinning.html.

281

https://doi.org/10.1145/2103656.2103666
https://doi.org/10.1145/2429069.2429131
https://doi.org/10.1145/360204.375719
https://plv.mpi-sws.org/iris/appendix-3.2.pdf
https://plv.mpi-sws.org/iris/appendix-3.2.pdf
https://doi.org/10.1007/978-3-642-28869-2_19
https://internals.rust-lang.org/t/rust-1-20-caused-pinning-to-become-incorrect/6695
https://internals.rust-lang.org/t/rust-1-20-caused-pinning-to-become-incorrect/6695
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/jim.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/jim.html
https://doi.org/10.1007/978-1-84882-912-1_8
https://github.com/rust-lang/rust/issues/51780
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3371113
https://github.com/rust-lang/rust/issues/41622
https://www.ralfj.de/blog/2018/04/05/a-formal-look-at-pinning.html
https://www.ralfj.de/blog/2018/04/05/a-formal-look-at-pinning.html

[Jun18b] Ralf Jung. “Fix futures creating aliasing mutable and shared ref”. Rust pull request #56319.
2018. url: https://github.com/rust-lang/rust/pull/56319.

[Jun18c] Ralf Jung. “Safe intrusive collections with pinning”. 2018. url: https://www.ralfj.de/blog/
2018/04/10/safe-intrusive-collections-with-pinning.html.

[Jun18d] Ralf Jung. “VecDeque: fix for stacked borrows”. Rust pull request #56161. 2018. url: https:
//github.com/rust-lang/rust/pull/56161.

[Jun19a] Ralf Jung. “Fix LinkedList invalidating mutable references”. Rust pull request #60072. 2019.
url: https://github.com/rust-lang/rust/pull/60072.

[Jun19b] Ralf Jung. “Fix overlapping references in BTree”. Rust pull request #58431. 2019. url: https:
//github.com/rust-lang/rust/pull/58431.

[Jun19c] Ralf Jung. “Fix str mutating through a ptr derived from &self”. Rust pull request #58200. 2019.
url: https://github.com/rust-lang/rust/pull/58200.

[Jun19d] Ralf Jung. “Logical atomicity in Iris: The good, the bad, and the ugly”. Presented at the Iris
Workshop (https://iris-project.org/workshop-2019/). 2019. url: https://people.mpi-
sws.org/~jung/iris/logatom-talk-2019.pdf.

[Jun19e] Ralf Jung. “Vec::push invalidates interior references even when it does not reallocate”. Rust issue
#60847. 2019. url: https://github.com/rust-lang/rust/issues/60847.

[Jun19f] Ralf Jung. “VecDeque’s Drain::drop writes to memory that a shared reference points to”. Rust
issue #60076. 2019. url: https://github.com/rust-lang/rust/issues/60076.

[Kai+17] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. “Strong
logic for weak memory: Reasoning about release-acquire consistency in Iris”. In: ECOOP. Vol. 74.
LIPIcs. 2017. doi: 10.4230/LIPIcs.ECOOP.2017.17.

[Kan+15] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov, Steve Zdancewic, and Viktor
Vafeiadis. “A formal C memory model supporting integer-pointer casts”. In: PLDI. 2015. doi:
10.1145/2737924.2738005.

[Kle99] Thomas Kleymann. “Hoare logic and auxiliary variables”. In: Formal Aspects of Computing 11.5
(Dec. 1999). doi: 10.1007/s001650050057.

[Klo19] Felix S. Klock. “Breaking news: Non-lexical lifetimes arrives for everyone”. Blog post. 2019.
url: http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-
arrives-for-everyone/.

[KPS20] Siddharth Krishna, Nanhey Patel, and Dennis E. Shasha. “Verifying concurrent search structure
templates”. In: PLDI. 2020. doi: 10.1145/3385412.3386029.

[Kre+17] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars
Birkedal. “The essence of higher-order concurrent separation logic”. In: ESOP. Vol. 10201. LNCS.
2017. doi: 10.1007/978-3-662-54434-1_26.

[Kre+18] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser,
Amin Timany, Arthur Charguéraud, and Derek Dreyer. “MoSeL: A general, extensible modal
framework for interactive proofs in separation logic”. In: PACMPL 2.ICFP, Article 77 (2018).
doi: 10.1145/3236772.

[Kre13] Robbert Krebbers. “Aliasing restrictions of C11 formalized in Coq”. In: CPP. 2013. doi: 10.
1007/978-3-319-03545-1_4.

[Kre15] Robbert Krebbers. “The C standard formalized in Coq”. PhD thesis. Radboud University, 2015.

[Kri+12] Neelakantan R. Krishnaswami, Aaron Turon, Derek Dreyer, and Deepak Garg. “Superficially
substructural types”. In: ICFP. 2012. doi: 10.1145/2364527.2364536.

282

https://github.com/rust-lang/rust/pull/56319
https://www.ralfj.de/blog/2018/04/10/safe-intrusive-collections-with-pinning.html
https://www.ralfj.de/blog/2018/04/10/safe-intrusive-collections-with-pinning.html
https://github.com/rust-lang/rust/pull/56161
https://github.com/rust-lang/rust/pull/56161
https://github.com/rust-lang/rust/pull/60072
https://github.com/rust-lang/rust/pull/58431
https://github.com/rust-lang/rust/pull/58431
https://github.com/rust-lang/rust/pull/58200
https://iris-project.org/workshop-2019/
https://people.mpi-sws.org/~jung/iris/logatom-talk-2019.pdf
https://people.mpi-sws.org/~jung/iris/logatom-talk-2019.pdf
https://github.com/rust-lang/rust/issues/60847
https://github.com/rust-lang/rust/issues/60076
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1007/s001650050057
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
https://doi.org/10.1145/3385412.3386029
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-319-03545-1_4
https://doi.org/10.1007/978-3-319-03545-1_4
https://doi.org/10.1145/2364527.2364536

[Kri19] Siddharth Krishna. “Compositional abstractions for verifying concurrent data structures”. PhD
thesis. New York University, Sept. 2019.

[Kro+20] Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen,
and Lars Birkedal. “Aneris: A mechanised logic for modular reasoning about distributed systems”.
In: ESOP. Vol. 12075. LNCS. Springer, 2020. doi: 10.1007/978-3-030-44914-8_13.

[Kro18] Morten Krogh-Jespersen. “Towards modular reasoning for stateful and concurrent programs”.
PhD thesis. Aarhus University, Sept. 2018.

[KS07] Oleg Kiselyov and Chung-chieh Shan. “Lightweight static capabilities”. In: (2007). Proceedings of
the Programming Languages meets Program Verification (PLPV 2006). doi: 10.1016/j.entcs.
2006.10.039.

[KSB17] Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. “A relational model of types-and-
effects in higher-order concurrent separation logic”. In: POPL. 2017. doi: 10.1145/3093333.
3009877.

[KSW18] Siddharth Krishna, Dennis E. Shasha, and Thomas Wies. “Go with the flow: Compositional
abstractions for concurrent data structures”. In: PACMPL 2.POPL, Article 37 (2018). doi:
10.1145/3158125.

[KSW20] Siddharth Krishna, Alexander J. Summers, and Thomas Wies. “Local reasoning for global graph
properties”. In: ESOP. 2020. doi: 10.1007/978-3-030-44914-8_12.

[KTB17] Robbert Krebbers, Amin Timany, and Lars Birkedal. “Interactive proofs in higher-order concurrent
separation logic”. In: POPL. 2017. doi: 10.1145/3093333.3009855.

[LAL18] Marcus Lindner, Jorge Aparicius, and Per Lindgren. “No panic! Verification of Rust programs by
symbolic execution”. In: INDIN. IEEE, 2018. doi: 10.1109/INDIN.2018.8471992.

[LB08] Xavier Leroy and Sandrine Blazy. “Formal verification of a C-like memory model and its uses for
verifying program transformations”. In: JAR 41.1 (2008). doi: 10.1007/s10817-008-9099-0.

[Lee+17] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer,
John Regehr, and Nuno P. Lopes. “Taming undefined behavior in LLVM”. In: PLDI. 2017. doi:
10.1145/3062341.3062343.

[Lee+18] Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr, and Nuno P. Lopes.
“Reconciling high-level optimizations and low-level code in LLVM”. In: PACMPL 2.OOPSLA,
Article 125 (Oct. 2018). doi: 10.1145/3276495.

[Ler+12] Xavier Leroy, Andrew Appel, Sandrine Blazy, and Gordon Stewart. “The CompCert memory
model, version 2”. Technical Report RR-7987. Inria, 2012. url: https://hal.inria.fr/hal-
00703441.

[Lev19] Ryan Levick. “Why Rust for safe systems programming”. Blog post. 2019. url: https://msrc-
blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/.

[Lie18] Joshua Liebow-Feeser. “Tracking issue for Ref/RefMut::map_split”. Rust issue #51476. 2018.
url: https://github.com/rust-lang/rust/issues/51476.

[Mal19] Gregory Malecha. “Two monoid questions”. Thread on Iris Club mailing list. 2019. url: https:
//lists.mpi-sws.org/pipermail/iris-club/2019-July/000198.html.

[Mat12] Nicholas D. Matsakis. “Imagine never hearing the phrase ‘aliasable, mutable’ again”. Blog post.
2012. url: https://smallcultfollowing.com/babysteps/blog/2012/11/18/imagine-never-
hearing-the-phrase-aliasable/.

[Mat14] Nicholas D. Matsakis. “Rust RFC: Stronger guarantees for mutable borrows”. Blog post. 2014.
url: https://smallcultfollowing.com/babysteps/blog/2014/02/25/rust-rfc-stronger-
guarantees-for-mutable-borrows/.

283

https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1016/j.entcs.2006.10.039
https://doi.org/10.1016/j.entcs.2006.10.039
https://doi.org/10.1145/3093333.3009877
https://doi.org/10.1145/3093333.3009877
https://doi.org/10.1145/3158125
https://doi.org/10.1007/978-3-030-44914-8_12
https://doi.org/10.1145/3093333.3009855
https://doi.org/10.1109/INDIN.2018.8471992
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1145/3276495
https://hal.inria.fr/hal-00703441
https://hal.inria.fr/hal-00703441
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/
https://github.com/rust-lang/rust/issues/51476
https://lists.mpi-sws.org/pipermail/iris-club/2019-July/000198.html
https://lists.mpi-sws.org/pipermail/iris-club/2019-July/000198.html
https://smallcultfollowing.com/babysteps/blog/2012/11/18/imagine-never-hearing-the-phrase-aliasable/
https://smallcultfollowing.com/babysteps/blog/2012/11/18/imagine-never-hearing-the-phrase-aliasable/
https://smallcultfollowing.com/babysteps/blog/2014/02/25/rust-rfc-stronger-guarantees-for-mutable-borrows/
https://smallcultfollowing.com/babysteps/blog/2014/02/25/rust-rfc-stronger-guarantees-for-mutable-borrows/

[Mat16a] Nicholas D. Matsakis. “Introducing MIR”. Blog post. 2016. url: https://blog.rust-lang.
org/2016/04/19/MIR.html.

[Mat16b] Nicholas D. Matsakis. “Non-lexical lifetimes: Introduction”. Blog post. 2016. url: http://smallc
ultfollowing.com/babysteps/blog/2016/04/27/non-lexical-lifetimes-introduction/.

[Mat17] Nicholas D. Matsakis. “Nested method calls via two-phase borrowing”. Blog post. 2017. url:
https://smallcultfollowing.com/babysteps/blog/2017/03/01/nested-method-calls-
via-two-phase-borrowing/.

[Mat18] Nicholas D. Matsakis. “An alias-based formulation of the borrow checker”. Blog post. 2018.
url: https://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-
formulation-of-the-borrow-checker/.

[Mem+19] Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson,
Robert N. M. Watson, and Peter Sewell. “Exploring C semantics and pointer provenance”. In:
PACMPL 3.POPL, Article 67 (2019). doi: 10.1145/3290380.

[Mil78] Robin Milner. “A theory of type polymorphism in programming”. In: Journal of Computer and
System Sciences 17.3 (1978). doi: 10.1016/0022-0000(78)90014-4.

[MJP19] Glen Mével, Jacques-Henri Jourdan, and François Pottier. “Time credits and time receipts in
Iris”. In: ESOP. Vol. 11423. LNCS. Springer, 2019. doi: 10.1007/978-3-030-17184-1_1.

[MS16] Kayvan Memarian and Peter Sewell. “N2014: What is C in practice? (Cerberus survey v2):
Analysis of responses”. ISO SC22 WG14 N2014. Mar. 2016. url: http://www.cl.cam.ac.uk/
~pes20/cerberus/notes50-survey-discussion.html.

[MSS16] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. “Viper: A verification infrastructure
for permission-based reasoning”. In: VMCAI. Vol. 9583. LNCS. 2016. doi: 10.1007/978-3-662-
49122-5_2.

[MTK20] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. “RustHorn: CHC-based verification
for Rust programs”. In: ESOP. 2020. doi: 10.1007/978-3-030-44914-8_18.

[Nan+08] Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and Lars Birkedal. “Ynot:
Dependent types for imperative programs”. In: ICFP. 2008. doi: 10.1145/1411204.1411237.

[Nan+14] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. “Communicating
state transition systems for fine-grained concurrent resources”. In: ESOP. Vol. 8410. LNCS. 2014.
doi: 10.1007/978-3-642-54833-8_16.

[NI03] Thi Viet Nga Nguyen and François Irigoin. “Alias verification for Fortran code optimization”. In:
J. UCS 9.3 (2003). doi: 10.3217/jucs-009-03-0270.

[Nor98] Michael Norrish. “C formalised in HOL”. PhD thesis. University of Cambridge, 1998.

[OCo+16] Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani, Japheth Lim, Toby Murray,
Yutaka Nagashima, Thomas Sewell, and Gerwin Klein. “Refinement through restraint: Bringing
down the cost of verification”. In: ICFP. 2016. doi: 10.1145/2951913.2951940.

[OHe07] Peter W. O’Hearn. “Resources, concurrency, and local reasoning”. In: TCS 375.1 (2007). doi:
10.1016/j.tcs.2006.12.035.

[OP99] Peter W. O’Hearn and David J. Pym. “The logic of bunched implications”. In: Bulletin of
Symbolic Logic 5.2 (June 1999). doi: 10.2307/421090.

[ORY01] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. “Local reasoning about programs
that alter data structures”. In: CSL. Vol. 2142. LNCS. 2001. doi: 10.1007/3-540-44802-0_1.

[Par10] Matthew J. Parkinson. “The next 700 separation logics - (Invited paper)”. In: VSTTE. Vol. 6217.
LNCS. 2010. doi: 10.1007/978-3-642-15057-9_12.

284

https://blog.rust-lang.org/2016/04/19/MIR.html
https://blog.rust-lang.org/2016/04/19/MIR.html
http://smallcultfollowing.com/babysteps/blog/2016/04/27/non-lexical-lifetimes-introduction/
http://smallcultfollowing.com/babysteps/blog/2016/04/27/non-lexical-lifetimes-introduction/
https://smallcultfollowing.com/babysteps/blog/2017/03/01/nested-method-calls-via-two-phase-borrowing/
https://smallcultfollowing.com/babysteps/blog/2017/03/01/nested-method-calls-via-two-phase-borrowing/
https://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
https://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
https://doi.org/10.1145/3290380
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1007/978-3-030-17184-1_1
http://www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html
http://www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1145/1411204.1411237
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.3217/jucs-009-03-0270
https://doi.org/10.1145/2951913.2951940
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.2307/421090
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-15057-9_12

[PBC06] Matthew J. Parkinson, Richard Bornat, and Cristiano Calcagno. “Variables as resource in Hoare
logics”. In: LICS. IEEE, 2006. doi: 10.1109/LICS.2006.52.

[Pie+19] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael
Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, Andrew Tolmach, and Brent Yorgey. “Software
foundations (volume 2): Programming language foundations”. 2019. url: https://softwarefou
ndations.cis.upenn.edu/plf-current/index.html.

[Plo73] Gordon Plotkin. “Lambda-definability and logical relations”. Unpublished manuscript. 1973. url:
http://homepages.inf.ed.ac.uk/gdp/publications/logical_relations_1973.pdf.

[Pop18] Nikita Popov. “Loop unrolling incorrectly duplicates noalias metadata”. LLVM issue #39282.
2018. url: https://bugs.llvm.org/show_bug.cgi?id=39282.

[Pot13] François Pottier. “Syntactic soundness proof of a type-and-capability system with hidden state”.
In: JFP 23.1 (2013). doi: 10.1017/S0956796812000366.

[Ree15] Eric Reed. “Patina: A formalization of the Rust programming language”. MA thesis. University
of Washington, USA, 2015.

[Reg17] John Regehr. “Undefined behavior in 2017”. Blog post. 2017. url: https://blog.regehr.org/
archives/1520.

[Rey02] John C. Reynolds. “Separation logic: A logic for shared mutable data structures”. In: LICS. 2002.
doi: 10.1109/LICS.2002.1029817.

[RL12] Valentin Robert and Xavier Leroy. “A formally-verified alias analysis”. In: CPP. 2012. doi:
10.1007/978-3-642-35308-6_5.

[RS10] Grigore Rosu and Traian-Florin Serbanuta. “An overview of the K semantic framework”. In:
Journal of Logic and Algebraic Programming 79.6 (2010). doi: 10.1016/j.jlap.2010.03.012.

[Rus20] The Rust teams. “Rust Programming Language”. 2020. url: https://www.rust-lang.org/.

[RVG15] Azalea Raad, Jules Villard, and Philippa Gardner. “CoLoSL: Concurrent local subjective logic”.
In: ESOP. 2015. doi: 10.1007/978-3-662-46669-8_29.

[Sam+20] Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. “The high-level benefits of
low-level sandboxing”. In: PACMPL 4.POPL, Article 32 (2020). doi: 10.1145/3371100.

[SB14] Kasper Svendsen and Lars Birkedal. “Impredicative concurrent abstract predicates”. In: ESOP.
Vol. 8410. LNCS. 2014. doi: 10.1007/978-3-642-54833-8_9.

[SBP13] Kasper Svendsen, Lars Birkedal, and Matthew J. Parkinson. “Modular reasoning about separation
of concurrent data structures”. In: ESOP. Vol. 7792. LNCS. 2013. doi: 10.1007/978-3-642-
37036-6_11.

[Sew19] Peter Sewell. “Type-changing and effective type”. Thread on C Programming Language Memory
Object Model mailing list. 2019. url: https://lists.cam.ac.uk/pipermail/cl-c-memory-
object-model/2019-May/msg00093.html.

[SGD17] David Swasey, Deepak Garg, and Derek Dreyer. “Robust and compositional verification of object
capability patterns”. In: PACMPL 1.OOPSLA, Article 89 (2017). doi: 10.1145/3133913.

[SM17] Josh Stone and Nicholas D. Matsakis. “The Rayon library”. Rust crate. 2017. url: https:
//crates.io/crates/rayon.

[SNB15] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. “Mechanized verification of fine-
grained concurrent programs”. In: PLDI. 2015. doi: 10.1145/2737924.2737964. url: http:
//doi.acm.org/10.1145/2737924.2737964.

285

https://doi.org/10.1109/LICS.2006.52
https://softwarefoundations.cis.upenn.edu/plf-current/index.html
https://softwarefoundations.cis.upenn.edu/plf-current/index.html
http://homepages.inf.ed.ac.uk/gdp/publications/logical_relations_1973.pdf
https://bugs.llvm.org/show_bug.cgi?id=39282
https://doi.org/10.1017/S0956796812000366
https://blog.regehr.org/archives/1520
https://blog.regehr.org/archives/1520
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-642-35308-6_5
https://doi.org/10.1016/j.jlap.2010.03.012
https://www.rust-lang.org/
https://doi.org/10.1007/978-3-662-46669-8_29
https://doi.org/10.1145/3371100
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1007/978-3-642-37036-6_11
https://lists.cam.ac.uk/pipermail/cl-c-memory-object-model/2019-May/msg00093.html
https://lists.cam.ac.uk/pipermail/cl-c-memory-object-model/2019-May/msg00093.html
https://doi.org/10.1145/3133913
https://crates.io/crates/rayon
https://crates.io/crates/rayon
https://doi.org/10.1145/2737924.2737964
http://doi.acm.org/10.1145/2737924.2737964
http://doi.acm.org/10.1145/2737924.2737964

[SSB16] Kasper Svendsen, Filip Sieczkowski, and Lars Birkedal. “Transfinite step-indexing: Decoupling
concrete and logical steps”. In: ESOP. Vol. 9632. LNCS. Springer, 2016. doi: 10.1007/978-3-
662-49498-1_28.

[Str12] Bjarne Stroustrup. “Foundations of C++”. In: ESOP. 2012. doi: 10.1007/978-3-642-28869-
2_1.

[Str94] Bjarne Stroustrup. “The design and evolution of C++”. New York, NY, USA: ACM Press/
Addison-Wesley Publishing Co., 1994. isbn: 0-201-54330-3.

[Swa+06] Nikhil Swamy, Michael W. Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. “Safe manual
memory management in Cyclone”. In: Science of Computer Programming 62.2 (2006). doi:
10.1016/j.scico.2006.02.003.

[Swa+16] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon
Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, et al.
“Dependent types and multi-monadic effects in F*”. In: POPL. 2016. doi: 10.1145/2837614.
2837655.

[Tai67] W. W. Tait. “Intensional interpretations of functionals of finite type I”. In: Journal of Symbolic
Logic 32.2 (1967). doi: 10.2307/2271658.

[Tas19] Joseph Tassarotti. “Verifying concurrent randomized algorithms”. PhD thesis. Carnegie Mellon
University, Jan. 2019.

[TB19] Amin Timany and Lars Birkedal. “Mechanized relational verification of concurrent programs
with continuations”. In: PACMPL 3.ICFP, Article 105 (2019). doi: 10.1145/3341709.

[TDB13] Aaron Turon, Derek Dreyer, and Lars Birkedal. “Unifying refinement and Hoare-style reasoning
in a logic for higher-order concurrency”. In: ICFP. 2013. doi: 10.1145/2500365.2500600.

[TH19] Joseph Tassarotti and Robert Harper. “A separation logic for concurrent randomized programs”.
In: PACMPL 3.POPL, Article 64 (2019). doi: 10.1145/3290377.

[The20] The Chromium project. “Chromium security: Memory safety”. 2020. url: https://www.chromi
um.org/Home/chromium-security/memory-safety.

[Tho19] Gavin Thomas. “A proactive approach to more secure code”. Blog post. 2019. url: https:
//msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/.

[Tim+18] Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. “A logical relation
for monadic encapsulation of state: Proving contextual equivalences in the presence of runST”.
In: PACMPL 2.POPL, Article 64 (2018). doi: 10.1145/3158152.

[Tim18] Amin Timany. “Contributions in programming languages theory: Logical relations and type
theory”. PhD thesis. KU Leuven, May 2018.

[TJH17] Joseph Tassarotti, Ralf Jung, and Robert Harper. “A higher-order logic for concurrent termination-
preserving refinement”. In: ESOP. Vol. 10201. LNCS. 2017. doi: 10.1007/978-3-662-54434-
1_34.

[TP11] Jesse A. Tov and Riccardo Pucella. “Practical affine types”. In: POPL. 2011. doi: 10.1145/
1926385.1926436.

[TPT15] John Toman, Stuart Pernsteiner, and Emina Torlak. “CRUST: A bounded verifier for Rust”. In:
ASE. 2015. doi: 10.1109/ASE.2015.77.

[Tur+13] Aaron Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. “Logical
relations for fine-grained concurrency”. In: POPL. 2013. doi: 10.1145/2429069.2429111.

[TVD14] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. “GPS: Navigating weak memory with ghosts,
protocols, and separation”. In: OOPSLA. 2014. doi: 10.1145/2660193.2660243.

286

https://doi.org/10.1007/978-3-662-49498-1_28
https://doi.org/10.1007/978-3-662-49498-1_28
https://doi.org/10.1007/978-3-642-28869-2_1
https://doi.org/10.1007/978-3-642-28869-2_1
https://doi.org/10.1016/j.scico.2006.02.003
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.2307/2271658
https://doi.org/10.1145/3341709
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/3290377
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://doi.org/10.1145/3158152
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1145/1926385.1926436
https://doi.org/10.1145/1926385.1926436
https://doi.org/10.1109/ASE.2015.77
https://doi.org/10.1145/2429069.2429111
https://doi.org/10.1145/2660193.2660243

[Ull16] Sebastian Andreas Ullrich. “Simple verification of rust programs via functional purification”.
MA thesis. Karlsruher Institut für Technologie (KIT), Dec. 2016.

[Vaf11] Viktor Vafeiadis. “Concurrent separation logic and operational semantics”. In: MFPS. 2011. doi:
10.1016/j.entcs.2011.09.029.

[VP07] Viktor Vafeiadis and Matthew J. Parkinson. “A marriage of rely/guarantee and separation logic”.
In: CONCUR. Vol. 4703. LNCS. 2007. doi: 10.1007/978-3-540-74407-8_18.

[Wad90] Philip Wadler. “Linear types can change the world!” In: Programming Concepts and Methods.
1990. url: https://homepages.inf.ed.ac.uk/wadler/papers/linear/linear.dvi.

[Wan+12] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich, and M. Frans Kaashoek.
“Undefined behavior: What happened to my code?” In: APSYS. 2012. doi: 10.1145/2349896.
2349905.

[WF94] Andrew K Wright and Matthias Felleisen. “A syntactic approach to type soundness”. In: Infor-
mation and computation 115.1 (1994). doi: 10.1006/inco.1994.1093.

[wit18] withoutboats. “Tracking issue for pin APIs (RFC 2349)”. Rust issue #49150. 2018. url: https:
//github.com/rust-lang/rust/issues/49150.

[WL95] Robert P. Wilson and Monica S. Lam. “Efficient context-sensitive pointer analysis for C programs”.
In: PLDI. 1995. doi: 10.1145/207110.207111.

287

https://doi.org/10.1016/j.entcs.2011.09.029
https://doi.org/10.1007/978-3-540-74407-8_18
https://homepages.inf.ed.ac.uk/wadler/papers/linear/linear.dvi
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1006/inco.1994.1093
https://github.com/rust-lang/rust/issues/49150
https://github.com/rust-lang/rust/issues/49150
https://doi.org/10.1145/207110.207111

	Introduction
	Making systems programming safer with unsafe code?
	Understanding Rust: RustBelt
	Evolving Rust: Stacked Borrows
	Overview and contributions
	Publications
	Collaborations

	I Iris
	Why Iris?
	Separation logic
	Concurrent separation logic
	Extensions of CSL
	Iris

	An introduction to Iris
	Ghost state in Iris: Resource algebras
	Invariants
	Persistent propositions
	Proof of the example

	Ghost state constructions
	RA constructions
	State-transition systems
	One RA to rule them all
	Authoritative ghost state
	Derived fractional heap
	General rules for authoritative ghost state

	Invariants and modalities
	General invariants and the later modality
	Cancellable invariants
	Mask-changing view shifts
	Weakest preconditions and the persistence modality
	View shifts as a modality
	Accessors
	Summary: Iris proof rules

	Paradoxes
	Naive higher-order ghost state paradox
	Linear impredicative invariants paradox

	Key differences to prior work
	Stability
	Resource algebra axioms
	Substitution-based language

	II RustBelt
	Rust 101
	Ownership and ownership transfer
	Mutable references
	Shared references
	Interior pointers
	Lifetimes
	Interior mutability

	The lambdaRust language and type system
	Syntax
	Operational semantics
	Type system: Overview
	Typechecking option_as_mut
	Typechecking borrowing
	Further type system features

	Type system: Appendix

	A semantic model of lambdaRust types in Iris
	A simplified semantic domain of types
	Program logic
	Interpreting types
	Interpreting shared references

	Lifetime logic
	Full borrows and lifetime tokens
	Lifetime inclusion
	Fractured borrows
	Atomic borrows
	Indexed borrows: Unifying persistent borrowing
	Atomic borrows
	Fractured borrows
	Reborrowing and other derived rules

	Implementing the lifetime logic (without reborrowing)
	Boxes
	Controlling borrows and inheritances
	The per-lifetime invariant
	Lifetime logic proofs

	Implementing the full lifetime logic
	Reducing the problem
	Adjusting the model
	Unnesting of raw borrows
	Ending lifetimes in the presence of reborrowing

	Semantic type system soundness
	Semantically modeling lambdaRust lifetime judgments
	Semantically modeling lambdaRust types
	Interlude: Non-atomic invariants and borrowing
	Semantically modeling lambdaRust typing judgments
	Adequacy

	The fundamental theorem of lambdaRust

	Modeling types with interior mutability
	Cell
	Semantic interpretation of Cell
	Soundness of the public operations

	Mutex
	Semantic interpretation of Mutex
	Semantic interpretation of MutexGuard
	Soundness of the public operations

	Related work
	Substructural type systems for state
	Rust verification

	III Stacked Borrows
	Uniqueness and immutability
	Mutable references in a stack
	An operational model of the borrow checker
	Accounting for raw pointers
	Retagging, and a proof sketch for the optimization on mutable references
	Shared references
	An optimization exploiting read-only shared references
	A proof sketch for the optimization on shared references

	Protectors and interior mutability
	Reordering memory accesses down instead of up
	Protectors
	Proof sketches for the optimizations
	Interior mutability

	Formal operational semantics
	High-level structure
	Memory accesses
	Retagging

	Evaluation
	Miri
	Coq formalization

	Related work
	Conclusion
	Future work

